描述:
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
思路:
动态规划常规分析:
1、对于动态规划,严格按照下列步骤进行分析:
1)、定义状态:通过分析最后一步、确定子问题(状态定义可能比较灵活,跟题意有出入)
2)、确定状态转移方程
3)、确定初始状态和边界情况
4)、按顺序进行计算
本题分析:
1、定义状态:
求0到n-1共n个数的最长子序列,最后最后一步为:求0到n-2共n-1个数的最长子序列,怎么分析?
定义状态为:f(i)= 数组下标为0到i - 1的范围内,最长子序列是多少?
正常分析步骤:
1)、要求0到i-1的最长子序列,需要先求出0到n-2的最长子序列,然后判断该子序列的最后一个值是否小于nums[i-1]
2)、如果小于,说明nums[i-1]可以加入到最长子序列,否则nums[i]可能不加入,也可能插入到0到n-2的最长子序列中间,为后续使用。无法再向下分析了,所以需要改变思路:
更改分析方法:
1)、假设0到n-2范围内的最长子序列的最后一个元素的下标为j(0<=j<=n-2)
2)、求出以每个元素结尾的最长子序列是多少(包含该元素),记录为f[i]
3)、求每一个f[i]都需要根据它前面的f[j]来确定,0<=j<=i-1且nums[j] < nums[i]
3)、然后在f[0...n-1]中找出最大值,即为所求
2、定义状态转移方程:
f(i) = max( 1 + f(j) if j < i and nums[i] > nums[j])
代码:
class Solution {
public int lengthOfLIS(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length;
int[] f = new int[n];
f[0] = 1;
for (int i = 1; i < n; i++) {
f[i] = 1;
for (int j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
f[i] = Math.max(f[i], f[j] + 1);
}
}
}
int max = 0;
for (int i = 0; i < n; i++) {
if (f[i] > max)
max = f[i];
}
return max;
}
}