最长上升子序列

描述:

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4 
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。

思路:

动态规划常规分析:

1、对于动态规划,严格按照下列步骤进行分析:
	1)、定义状态:通过分析最后一步、确定子问题(状态定义可能比较灵活,跟题意有出入)
	2)、确定状态转移方程
	3)、确定初始状态和边界情况
	4)、按顺序进行计算

本题分析:

1、定义状态:
	求0到n-1共n个数的最长子序列,最后最后一步为:求0到n-2共n-1个数的最长子序列,怎么分析?
 	定义状态为:f(i)= 数组下标为0到i - 1的范围内,最长子序列是多少?

	正常分析步骤:
	1)、要求0到i-1的最长子序列,需要先求出0到n-2的最长子序列,然后判断该子序列的最后一个值是否小于nums[i-1]
	2)、如果小于,说明nums[i-1]可以加入到最长子序列,否则nums[i]可能不加入,也可能插入到0到n-2的最长子序列中间,为后续使用。无法再向下分析了,所以需要改变思路:

	更改分析方法:
	1)、假设0到n-2范围内的最长子序列的最后一个元素的下标为j(0<=j<=n-2)
	2)、求出以每个元素结尾的最长子序列是多少(包含该元素),记录为f[i]
	3)、求每一个f[i]都需要根据它前面的f[j]来确定,0<=j<=i-1且nums[j] < nums[i]
	3)、然后在f[0...n-1]中找出最大值,即为所求

2、定义状态转移方程:
	f(i) = max( 1 + f(j) if j < i and nums[i] > nums[j])

代码:

class Solution {
       
    public int lengthOfLIS(int[] nums) {
        if (nums == null || nums.length == 0) return 0;
        int n = nums.length;
        int[] f = new int[n];
        f[0] = 1;
        for (int i = 1; i < n; i++) {
            f[i] = 1;
            for (int j = 0; j < i; j++) {
                if (nums[j] < nums[i]) {
                    f[i] = Math.max(f[i], f[j] + 1);
                }
            }
        }
        int max = 0;
        for (int i = 0; i < n; i++) {
            if (f[i] > max)
                max = f[i];
        }
        return max;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值