圆周上任意取三点组成直角三角形的概率为0

探讨在单位圆周上随机选取三点形成三角形的几何概型问题,解析直角、锐角及钝角三角形形成的充分必要条件,揭示构成直角三角形的概率为何为零。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

圆周上任意取三点组成直角三角形的概率为0!

不失一般性,我们在一个单位圆上做分割,下图中两点之间的弧长用对应的字母表示:

将圆分割

这时,根据圆周角与所夹弧长的关系可以把该问题转化为几何概型:

  • 三角形为锐角三角形的充要条件是三条弧长都小于 π \pi π
  • 三角形为直角三角形的充要条件是三条弧长只有一条等于 π \pi π
  • 三角形为钝角三角形的充要条件是三条弧长只有一条大于 π \pi π

将几何概型表现在坐标轴上:
在这里插入图片描述
其中, Δ A O B \Delta AOB ΔAOB的所围成区域的点集表示了全概率空间, S 3 S_3 S3表示组成锐角三角形的事件,根据面积比可以得到概率为 S 3 S Δ A O B = 1 4 \frac{S_3}{S_{\Delta AOB}}=\frac{1}{4} SΔAOBS3=41; 而三条红线在 Δ A O B \Delta AOB ΔAOB中所截断线段的长度代表组成直角三角形的事件,其概率为0 S 1 + S 2 + S 4 S_1+S_2+S_4 S1+S2+S4表示组成钝角三角形的事件,其概率为 3 4 \frac{3}{4} 43.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值