lintcode[122]:直方图内最大矩形面积

描述:Given n non-negative integers representing the histogram’s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
The largest rectangle is shown in the shaded area, which has area = 10 unit.
样例
给出 height = [2,1,5,6,2,3],返回 10。
思路:如果对于每个直方块,找到从它开始往左边数第一个比它小的,和往右边数第一个比他小的,则可以确定出以该直方块为最矮一块的矩阵的最大面积。使用数据结构栈,栈中保存递增序列,从左到右依次遍历每个数让其入栈,入栈之前先pop出所有>=该数的数,从而保持栈中的递增序列。pop完之后的栈顶元素即为该数往左边数第一个比他小的数。同理反过来遍历一次可以得到往右边数第一个比他小的数。时间复杂度O(n),空间复杂度O(n)。
思路来源:九章算法面试题43 直方图内最大矩阵
参考代码:

class Solution {
public:
    /**
     * @param height: A list of integer
     * @return: The area of largest rectangle in the histogram
     */
    struct rectangle {
        int index;
        int length;
    };
    int largestRectangleArea(vector<int> &length) {
        // write your code here
        std::vector<int> left;
        std::vector<int> right;
        std::stack<rectangle> area;
        for (int i = 0; i < length.size(); i++) {
            while (!area.empty()) {
                if (area.top().length >= length[i]) {
                    area.pop();
                }
                else {
                    left.push_back(i - area.top().index - 1);
                    break;
                }
            }
            if (area.empty()) {
                left.push_back(i);
            }
            rectangle rect;
            rect.length = length[i];
            rect.index = i;
            area.push(rect);
        }
        while (!area.empty()) {
            area.pop();
        }
        for (int i = length.size() - 1; i >= 0; i--) {
            while (!area.empty()) {
                if (area.top().length >= length[i]) {
                    area.pop();
                }
                else {
                    right.insert(right.begin(), area.top().index - i - 1);
                    break;
                }
            }
            if (area.empty()) {
                right.insert(right.begin(), length.size() - i - 1);
            }
            rectangle rect;
            rect.length = length[i];
            rect.index = i;
            area.push(rect);
        }
        int max = 0;
        for (int i = 0; i < length.size(); i++) {
            length[i] = (left[i] + right[i] + 1) * length[i];
            if (max < length[i]) {
                max = length[i];
            }
        }
        return max;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值