描述:Given n non-negative integers representing the histogram’s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
The largest rectangle is shown in the shaded area, which has area = 10 unit.
样例
给出 height = [2,1,5,6,2,3],返回 10。
思路:如果对于每个直方块,找到从它开始往左边数第一个比它小的,和往右边数第一个比他小的,则可以确定出以该直方块为最矮一块的矩阵的最大面积。使用数据结构栈,栈中保存递增序列,从左到右依次遍历每个数让其入栈,入栈之前先pop出所有>=该数的数,从而保持栈中的递增序列。pop完之后的栈顶元素即为该数往左边数第一个比他小的数。同理反过来遍历一次可以得到往右边数第一个比他小的数。时间复杂度O(n),空间复杂度O(n)。
思路来源:九章算法面试题43 直方图内最大矩阵
参考代码:
class Solution {
public:
/**
* @param height: A list of integer
* @return: The area of largest rectangle in the histogram
*/
struct rectangle {
int index;
int length;
};
int largestRectangleArea(vector<int> &length) {
// write your code here
std::vector<int> left;
std::vector<int> right;
std::stack<rectangle> area;
for (int i = 0; i < length.size(); i++) {
while (!area.empty()) {
if (area.top().length >= length[i]) {
area.pop();
}
else {
left.push_back(i - area.top().index - 1);
break;
}
}
if (area.empty()) {
left.push_back(i);
}
rectangle rect;
rect.length = length[i];
rect.index = i;
area.push(rect);
}
while (!area.empty()) {
area.pop();
}
for (int i = length.size() - 1; i >= 0; i--) {
while (!area.empty()) {
if (area.top().length >= length[i]) {
area.pop();
}
else {
right.insert(right.begin(), area.top().index - i - 1);
break;
}
}
if (area.empty()) {
right.insert(right.begin(), length.size() - i - 1);
}
rectangle rect;
rect.length = length[i];
rect.index = i;
area.push(rect);
}
int max = 0;
for (int i = 0; i < length.size(); i++) {
length[i] = (left[i] + right[i] + 1) * length[i];
if (max < length[i]) {
max = length[i];
}
}
return max;
}
};