今天在洛谷上刷了一道这样的题(背包问题入门)
题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的NN元。于是,他把每件物品规定了一个重要度,分为55等:用整数1-51−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过NN元(可以等于NN元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
经典背包问题中含有以下两个关键信息:
- 最大容量
- 最大金额
即求解固定容量下最大的金额。
此题将金额(n)视作容量,金额乘以权重(m)为金额。
首先开一个M_MAX*N_MAX的数组用于记录
下面递归方法需要重点分析
int culculate(int num, int money)
{
if (memory[num][money] >= 0)
return memory[num][money];
else if (num == m)
return 0;
else if (money < price[num])
return culculate(num + 1, money);
else
{
int a = max(culculate