初学背包问题心得

本文分享了作者初次学习背包问题的心得,通过一道具体的题目介绍了背包问题的基本概念,如最大容量和最大金额。文章强调了动态规划在解决此类问题中的应用,分析了递归方法的细节,并提供了核心代码。最后提到了背包问题的拓展,如使用递推数组和购买多次的场景。
摘要由CSDN通过智能技术生成

今天在洛谷上刷了一道这样的题(背包问题入门)

题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的NN元。于是,他把每件物品规定了一个重要度,分为55等:用整数1-51−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过NN元(可以等于NN元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

经典背包问题中含有以下两个关键信息:

  • 最大容量
  • 最大金额
    即求解固定容量下最大的金额。
    此题将金额(n)视作容量,金额乘以权重(m)为金额。
    首先开一个M_MAX*N_MAX的数组用于记录
    下面递归方法需要重点分析
int culculate(int num, int money)
{
   
    if (memory[num][money] >= 0)
        return memory[num][money];
    else if (num == m)
        return 0;
    else if (money < price[num])
        return culculate(num + 1, money);
    else
    {
   
        int a = max(culculate
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值