Codevs_P1250 Fibonacci数列(矩阵快速幂)

14 篇文章 0 订阅
6 篇文章 0 订阅

时间限制: 1 s
空间限制: 128000 KB
题目等级 : 钻石 Diamond
题目描述 Description
定义:f0=f1=1, fn=fn-1+fn-2(n>=2)。{fi}称为Fibonacci数列。

输入n,求fn mod q。其中1<=q<=30000。

输入描述 Input Description
第一行一个数T(1<=T<=10000)。

以下T行,每行两个数,n,q(n<=109, 1<=q<=30000)

输出描述 Output Description
文件包含T行,每行对应一个答案。

样例输入 Sample Input
3
6 2
7 3
7 11

样例输出 Sample Output
1
0
10

数据范围及提示 Data Size & Hint
1<=T<=10000

n<=109, 1<=q<=30000

#include<cstdio>
#include<vector>
#include<iostream>
using namespace std;
typedef vector<int> vec;
typedef vector<vec> mat;
int n,p;
mat mul(mat &A,mat &B){
    mat C(A.size(),vec(B[0].size()));
    for(int i=0;i<A.size();i++)
        for(int k=0;k<B.size();k++)
            for(int j=0;j<B[0].size();j++)
                C[i][j]=(C[i][j]+A[i][k]*B[k][j])%p;
    return C;
}
mat pow(mat A,int n){
    mat B(A.size(),vec(A.size()));
    for(int i=0;i<A.size();i++) B[i][i]=1;
    while(n>0){
        if(n&1) B=mul(B,A);
        A=mul(A,A);
        n>>=1;
    }
    return B;
}
void solve(){
    mat A(2,vec(2));
    A[0][0]=1,A[0][1]=1;
    A[1][0]=1,A[1][1]=0;
    A=pow(A,n+1);
    printf("%d\n",A[1][0]);
}
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&p);
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值