BZOJ_P4300 绝世好(sb)题(动态规划)

本文探讨了一个关于寻找最长子序列的问题,其中子序列需满足特定条件:任意两个连续元素进行按位与运算的结果不为0。通过使用按位运算技巧,文章提供了一种高效的求解方法,并附带示例输入输出。

Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 724 Solved: 390
[Submit][Status][Discuss]
Description

给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len)。

Input
输入文件共2行。
第一行包括一个整数n。
第二行包括n个整数,第i个整数表示ai。

Output
输出文件共一行。
包括一个整数,表示子序列bi的最长长度。
Sample Input
3
1 2 3

Sample Output
2

HINT
对于100%的数据,1<=n<=100000,ai<=10^9。

Source
By Oxer

bi&bi-1!=0说明二者的二进制中有相同的一位

#include<cstdio>
#include<iostream>
using namespace std;
#define N 32
int n,t,ans,x;int f[N];
int in(){
    int x=0;char ch=getchar();
    while(ch>'9'||ch<'0') ch=getchar();
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x;
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&x);t=0;
        for(int j=0;j<N;j++)
            if(x&(1<<j)) t=max(t,f[j]+1);
        for(int j=0;j<N;j++)
            if(x&(1<<j)) f[j]=t;
    }
    for(int i=0;i<N;i++) ans=max(ans,f[i]);
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值