题目大意,给定n,{an},求a的一个最大子序列bn,使得bi&b(i-1)!=0.求最大的|b|
题解:显然是DP,状态转移方程显然是dp[n]=max{dp[k]+1},a[n]&a[k]!=0
考虑优化,发现和LIS有点类似。
LIS有个线段树优化就是暴力的记录最后的数字(显然是最大的)对应的最长的序列是多长,这样离散化一下每次询问前缀最大值。
这个题的优化类似,发现a&b!=0意味着至少有一位都是1.
所以用f[i]表示第i为为1,最长为多长,这样每次读进来一个数x(假设x是第i个数),看x的二进制哪一位=1,设是第p位,
那么dp[i]=max(f[p])+1,x&(1<<p)==1。
然后计算出dpi用来更新fi即可。
最后max(dp[i])就是答案。
//BZOJ 4300
#include<iostream>
#include<cstring>
#include<cstdio>
#define MAXL 32
using namespace std;
int f[MAXL],n,ans;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int x,ansx=1;scanf("%d",&x);
for(int j=0;j<MAXL;j++)
if(x&(1<<j)) ansx=max(ansx,f[j]+1);
for(int j=0;j<MAXL;j++)
if(x&(1<<j)) f[j]=max(f[j],ansx);
ans=max(ans,ansx);
}
printf("%d\n",ans);return 0;
}