BZOJ4300 绝世好题

传送门

题目大意,给定n,{an},求a的一个最大子序列bn,使得bi&b(i-1)!=0.求最大的|b|

题解:显然是DP,状态转移方程显然是dp[n]=max{dp[k]+1},a[n]&a[k]!=0

考虑优化,发现和LIS有点类似。

LIS有个线段树优化就是暴力的记录最后的数字(显然是最大的)对应的最长的序列是多长,这样离散化一下每次询问前缀最大值。

这个题的优化类似,发现a&b!=0意味着至少有一位都是1.

所以用f[i]表示第i为为1,最长为多长,这样每次读进来一个数x(假设x是第i个数),看x的二进制哪一位=1,设是第p位,

那么dp[i]=max(f[p])+1,x&(1<<p)==1。

然后计算出dpi用来更新fi即可。

最后max(dp[i])就是答案。

//BZOJ 4300
#include<iostream>
#include<cstring>
#include<cstdio>
#define MAXL 32
using namespace std;
int f[MAXL],n,ans;
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		int x,ansx=1;scanf("%d",&x);
		for(int j=0;j<MAXL;j++)
			if(x&(1<<j)) ansx=max(ansx,f[j]+1);
		for(int j=0;j<MAXL;j++)
			if(x&(1<<j)) f[j]=max(f[j],ansx);
		ans=max(ans,ansx);
	}
	printf("%d\n",ans);return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值