BZOJ_P2301&Codevs_P1858 [HAOI2011]Problem b(数论+容斥原理)

84 篇文章 0 订阅
54 篇文章 0 订阅

BZOJ传送门 Codevs传送门
2301: [HAOI2011]Problem b

Time Limit: 50 Sec Memory Limit: 256 MB
Submit: 2723 Solved: 1200
[Submit][Status][Discuss]
Description
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input
2
2 5 1 5 1
1 5 1 5 2

Sample Output
14
3

HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

Source

最近也懒得写题解了,基本上数论全部懵逼,题基本照着打直接给跪了
这里写图片描述

自己写的式子,不好见谅哈,如有不对请指出!

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 50005
#define MAXN 1024*512
bool v[N];int mu[N],p[N];long long sum[N];
int cnt,n,t,a,b,c,d,k;long long ans;
void GetPrime(){
    mu[1]=1;
    for(int i=2;i<N;i++){
        if(!v[i]){mu[i]=-1;p[cnt++]=i;}
        for(int j=0;j<cnt&&i*p[j]<N;j++){
            v[i*p[j]]=true;
            if(i%p[j]) mu[i*p[j]]=-mu[i];
            else{mu[i*p[j]]=0;break;}
        }
    }
    for(int i=1;i<N;i++) sum[i]=sum[i-1]+mu[i];
}
long long getans(int n,int m){
    long long res=0;if(n>m) swap(n,m);
    for(int i=1,j;i<=n;i=j+1){
        j=min(n/(n/i),m/(m/i));
        res+=(sum[j]-sum[i-1])*(n/i)*(m/i);
    }
    return res;
}
char buf[MAXN],*ps=buf,*pe=ps+1;
inline void rnext(){//读优 
    if(++ps==pe)
        pe=(ps=buf)+fread(buf,1,sizeof(buf),stdin);
}
inline int in(){
    do{rnext();}while(!isdigit(*ps));
    int ans=0;
    do{ans=(ans<<1)+(ans<<3)+*ps-48;rnext();
    }while(isdigit(*ps));
    return ans;
}
/*
int in(){
    int x=0;char ch=getchar();
    while(ch>'9'||ch<'0') ch=getchar();
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x;
}*/
int main(){
    GetPrime();
    t=in();
    while(t--){
        a=in(),b=in(),c=in(),d=in(),k=in();
        ans=getans(b/k,d/k);ans-=getans((a-1)/k,d/k);
        ans-=getans(b/k,(c-1)/k);ans+=getans((a-1)/k,(c-1)/k);
        printf("%lld\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值