验证码识别
算法玩不起
这个作者很懒,什么都没留下…
展开
-
验证码识别1(整体训练)———验证码生成
首先生成验证码的代码如下,下面列子只生成数字的验证码,你需要在代码存放的目录下新建一个名字叫images的文件夹,然后运行: # coding: utf-8 # 验证码生成库 from captcha.image import ImageCaptcha # pip install captcha import numpy as np from PIL import Image impor...原创 2019-09-05 09:28:54 · 384 阅读 · 0 评论 -
验证码识别2(使用整体训练法)——验证码数据转换为tfrecord格式
上一篇文章我们生成了验证码,而我们知道一张图片的直接喂入到网络中会使得训练速度变得很慢,这时候我们就需要把图片转换成其他方便读取快速的格式,tfrecord格式是Google提供的一种格式,速度很快。那么接下来,我们需要把图片转换格式了。 代码如下,你需要修改的是图片给出的路径,还有tfrecord文件存放的路径。 import tensorflow as tf import os impo...原创 2019-09-05 09:46:33 · 376 阅读 · 0 评论 -
验证码识别3(整体训练)——训练部分
我们在上一篇中生成了tfrecord文件,下面我们就要对其进行训练了。 首先讲一下训练的方法,我们这里是把一个图片的名字转换成one-hot格式,每个数字为10位,每个样本一共4个数字,也就是每个标签对应40位。训练的方法上使用了alexnet网络,你需要下载一个文件,地址是链接:https://pan.baidu.com/s/17aMOksxsOyUIN_XmqL8rBg 提取码:mcym,将...原创 2019-09-05 10:05:57 · 422 阅读 · 2 评论 -
验证码识别4(整体训练)——验证部分
上面我们已经得到了模型文件,接下来我们需要验证我们的网络是否准确: 给出验证的代码(需要改动的是模型的路径,这里使用测试集test.tfrecord): # coding: utf-8 import tensorflow as tf from PIL import Image from nets import nets_factory import matplotlib.pyplot as ...原创 2019-09-05 10:05:34 · 509 阅读 · 0 评论