spark 单词统计

本文通过代码实现spark的本地wordcount统计功能和集群模式的worldcount统计功能

public class WordCountLocal {
   
   public static void main(String[] args) {
      // 编写Spark应用程序
      // 本地执行,是可以执行在eclipse中的main方法中,执行的
      
      // 第一步:创建SparkConf对象,设置Spark应用的配置信息
      // 使用setMaster()可以设置Spark应用程序要连接的Spark集群的master节点的url
      // 但是如果设置为local则代表,在本地运行
      SparkConf conf = new SparkConf()
            .setAppName("WordCountLocal")
            .setMaster("local");  
      
      // 第二步:创建JavaSparkContext对象
      // 在Spark中,SparkContext是Spark所有功能的一个入口,你无论是用java、scala,甚至是python编写
         // 都必须要有一个SparkContext,它的主要作用,包括初始化Spark应用程序所需的一些核心组件,包括
         // 调度器(DAGSchedule、TaskScheduler),还会去到Spark Master节点上进行注册,等等
      // 一句话,SparkContext,是Spark应用中,可以说是最最重要的一个对象
      // 但是呢,在Spark中,编写不同类型的Spark应用程序,使用的SparkContext是不同的,如果使用scala,
         // 使用的就是原生的SparkContext对象
         // 但是如果使用Java,那么就是JavaSparkContext对象
         // 如果是开发Spark SQL程序,那么就是SQLContext、HiveContext
         // 如果是开发Spark Streaming程序,那么就是它独有的SparkContext
         // 以此类推
      JavaSparkContext sc = new JavaSparkContext(conf);
   
      // 第三步:要针对输入源(hdfs文件、本地文件,等等),创建一个初始的RDD
      // 输入源中的数据会打散,分配到RDD的每个partition中,从而形成一个初始的分布式的数据集
      // 我们这里呢,因为是本地测试,所以呢,就是针对本地文件
      // SparkContext中,用于根据文件类型的输入源创建RDD的方法,叫做textFile()方法
      // 在Java中,创建的普通RDD,都叫做JavaRDD
      // 在这里呢,RDD中,有元素这种概念,如果是hdfs或者本地文件呢,创建的RDD,每一个元素就相当于
      // 是文件里的一行
      JavaRDD<String> lines = sc.textFile("C://Users//Administrator//Desktop//spark.txt");
   
      // 第四步:对初始RDD进行transformation操作,也就是一些计算操作
      // 通常操作会通过创建function,并配合RDD的map、flatMap等算子来执行
      // function,通常,如果比较简单,则创建指定Function的匿名内部类
      // 但是如果function比较复杂,则会单独创建一个类,作为实现这个function接口的类
      
      // 先将每一行拆分成单个的单词
      // FlatMapFunction,有两个泛型参数,分别代表了输入和输出类型
      // 我们这里呢,输入肯定是String,因为是一行一行的文本,输出,其实也是String,因为是每一行的文本
      // 这里先简要介绍flatMap算子的作用,其实就是,将RDD的一个元素,给拆分成一个或多个元素
      JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
         
         private static final long serialVersionUID = 1L;
         
         @Override
         public Iterable<String> call(String line) throws Exception {
            return Arrays.asList(line.split(" "));  
         }
         
      });
      
      // 接着,需要将每一个单词,映射为(单词, 1)的这种格式
         // 因为只有这样,后面才能根据单词作为key,来进行每个单词的出现次数的累加
      // mapToPair,其实就是将每个元素,映射为一个(v1,v2)这样的Tuple2类型的元素
         // 如果大家还记得scala里面讲的tuple,那么没错,这里的tuple2就是scala类型,包含了两个值
      // mapToPair这个算子,要求的是与PairFunction配合使用,第一个泛型参数代表了输入类型
         // 第二个和第三个泛型参数,代表的输出的Tuple2的第一个值和第二个值的类型
      // JavaPairRDD的两个泛型参数,分别代表了tuple元素的第一个值和第二个值的类型
      JavaPairRDD<String, Integer> pairs = words.mapToPair(
            
            new PairFunction<String, String, Integer>() {

               private static final long serialVersionUID = 1L;
      
               @Override
               public Tuple2<String, Integer> call(String word) throws Exception {
                  return new Tuple2<String, Integer>(word, 1);
               }
               
            });
      
      // 接着,需要以单词作为key,统计每个单词出现的次数
      // 这里要使用reduceByKey这个算子,对每个key对应的value,都进行reduce操作
      // 比如JavaPairRDD中有几个元素,分别为(hello, 1) (hello, 1) (hello, 1) (world, 1)
      // reduce操作,相当于是把第一个值和第二个值进行计算,然后再将结果与第三个值进行计算
      // 比如这里的hello,那么就相当于是,首先是1 + 1 = 2,然后再将2 + 1 = 3
      // 最后返回的JavaPairRDD中的元素,也是tuple,但是第一个值就是每个key,第二个值就是key的value
      // reduce之后的结果,相当于就是每个单词出现的次数
      JavaPairRDD<String, Integer> wordCounts = pairs.reduceByKey(
            
            new Function2<Integer, Integer, Integer>() {
               
               private static final long serialVersionUID = 1L;
      
               @Override
               public Integer call(Integer v1, Integer v2) throws Exception {
                  return v1 + v2;
               }
               
            });
      
      // 到这里为止,我们通过几个Spark算子操作,已经统计出了单词的次数
      // 但是,之前我们使用的flatMap、mapToPair、reduceByKey这种操作,都叫做transformation操作
      // 一个Spark应用中,光是有transformation操作,是不行的,是不会执行的,必须要有一种叫做action
      // 接着,最后,可以使用一种叫做action操作的,比如说,foreach,来触发程序的执行
      wordCounts.foreach(new VoidFunction<Tuple2<String,Integer>>() {
         
         private static final long serialVersionUID = 1L;
         
         @Override
         public void call(Tuple2<String, Integer> wordCount) throws Exception {
            System.out.println(wordCount._1 + " appeared " + wordCount._2 + " times.");    
         }
         
      });
      
      sc.close();
   }
   
}
集群模式

public class WordCountCluster {
   
   public static void main(String[] args) {
      // 如果要在spark集群上运行,需要修改的,只有两个地方
      // 第一,将SparkConf的setMaster()方法给删掉,默认它自己会去连接
      // 第二,我们针对的不是本地文件了,修改为hadoop hdfs上的真正的存储大数据的文件
      
      // 实际执行步骤:
      // 1、将spark.txt文件上传到hdfs上去
      // 2、使用我们最早在pom.xml里配置的maven插件,对spark工程进行打包
      // 3、将打包后的spark工程jar包,上传到机器上执行
      // 4、编写spark-submit脚本
      // 5、执行spark-submit脚本,提交spark应用到集群执行
      
      SparkConf conf = new SparkConf()
            .setAppName("WordCountCluster");  
      
      JavaSparkContext sc = new JavaSparkContext(conf);

      JavaRDD<String> lines = sc.textFile("hdfs://spark1:9000/spark.txt");
      
      JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
         
         private static final long serialVersionUID = 1L;
         
         @Override
         public Iterable<String> call(String line) throws Exception {
            return Arrays.asList(line.split(" "));  
         }
         
      });

      JavaPairRDD<String, Integer> pairs = words.mapToPair(
            
            new PairFunction<String, String, Integer>() {

               private static final long serialVersionUID = 1L;
      
               @Override
               public Tuple2<String, Integer> call(String word) throws Exception {
                  return new Tuple2<String, Integer>(word, 1);
               }
               
            });
      
      JavaPairRDD<String, Integer> wordCounts = pairs.reduceByKey(
            
            new Function2<Integer, Integer, Integer>() {
               
               private static final long serialVersionUID = 1L;
      
               @Override
               public Integer call(Integer v1, Integer v2) throws Exception {
                  return v1 + v2;
               }
               
            });
      
      wordCounts.foreach(new VoidFunction<Tuple2<String,Integer>>() {
         
         private static final long serialVersionUID = 1L;
         
         @Override
         public void call(Tuple2<String, Integer> wordCount) throws Exception {
            System.out.println(wordCount._1 + " appeared " + wordCount._2 + " times.");    
         }
         
      });
      
      sc.close();
   }
   
}


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页