spark排序版本的woldcount

原创 2018年04月15日 14:56:54

通过代码实现woldcount统计且根据count进行排序

package cn.spark.study.core;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;

/**
 * 排序的wordcount程序
 * @author jhp
 *
 */
public class SortWordCount {

   public static void main(String[] args) {
      // 创建SparkConf和JavaSparkContext
      SparkConf conf = new SparkConf()
            .setAppName("SortWordCount")
            .setMaster("local"); 
      JavaSparkContext sc = new JavaSparkContext(conf);
      
      // 创建lines RDD
      JavaRDD<String> lines = sc.textFile("C://Users//Administrator//Desktop//spark.txt");
      
      // 执行我们之前做过的单词计数
      JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {

         private static final long serialVersionUID = 1L;

         @Override
         public Iterable<String> call(String t) throws Exception {
            return Arrays.asList(t.split(" "));  
         }
         
      });
      
      JavaPairRDD<String, Integer> pairs = words.mapToPair(
            
            new PairFunction<String, String, Integer>() {

               private static final long serialVersionUID = 1L;

               @Override
               public Tuple2<String, Integer> call(String t) throws Exception {
                  return new Tuple2<String, Integer>(t, 1);
               }
               
            });
      
      JavaPairRDD<String, Integer> wordCounts = pairs.reduceByKey(
            
            new Function2<Integer, Integer, Integer>() {

               private static final long serialVersionUID = 1L;

               @Override
               public Integer call(Integer v1, Integer v2) throws Exception {
                  return v1 + v2;
               }
               
            });
      
      // 到这里为止,就得到了每个单词出现的次数
      // 但是,问题是,我们的新需求,是要按照每个单词出现次数的顺序,降序排序
      // wordCounts RDD内的元素是什么?应该是这种格式的吧:(hello, 3) (you, 2)
      // 我们需要将RDD转换成(3, hello) (2, you)的这种格式,才能根据单词出现次数进行排序把!
      
      // 进行key-value的反转映射
      JavaPairRDD<Integer, String> countWords = wordCounts.mapToPair(
            
            new PairFunction<Tuple2<String,Integer>, Integer, String>() {

               private static final long serialVersionUID = 1L;

               @Override
               public Tuple2<Integer, String> call(Tuple2<String, Integer> t)
                     throws Exception {
                  return new Tuple2<Integer, String>(t._2, t._1);
               }
               
            });
      
      // 按照key进行排序
      JavaPairRDD<Integer, String> sortedCountWords = countWords.sortByKey(false);
      
      // 再次将value-key进行反转映射
      JavaPairRDD<String, Integer> sortedWordCounts = sortedCountWords.mapToPair(
            
            new PairFunction<Tuple2<Integer,String>, String, Integer>() {

               private static final long serialVersionUID = 1L;

               @Override
               public Tuple2<String, Integer> call(Tuple2<Integer, String> t)
                     throws Exception {
                  return new Tuple2<String, Integer>(t._2, t._1);
               }
               
            });
      
      // 到此为止,我们获得了按照单词出现次数排序后的单词计数
      // 打印出来
      sortedWordCounts.foreach(new VoidFunction<Tuple2<String,Integer>>() {
         
         private static final long serialVersionUID = 1L;

         @Override
         public void call(Tuple2<String, Integer> t) throws Exception {
            System.out.println(t._1 + " appears " + t._2 + " times.");     
         }
         
      });
      
      // 关闭JavaSparkContext
      sc.close();
   }
   
}

数据结构基础系列(9):排序

数据结构课程是计算机类专业的专业基础课程,在IT人才培养中,起着重要的作用。课程按照大学计算机类专业课程大纲的要求,安排教学内容,满足需要系统学习数据结构的人。系列课程包含11个部分,本课为第9部分排序,介绍插入排序、交换排序、选择排序、归并排序、基数排序等各种排序算法,以及各种算法的性能分析。
  • 2015年11月25日 22:02

Spark SQL函数之分组排序

需求:根据class分组对组内的age进行排序 原表 结果 Spark  SQL : SELECT name,  age,  class,  row_number() ov...
  • m0_37942876
  • m0_37942876
  • 2018-02-02 15:02:13
  • 74

Spark基础排序+二次排序(java+scala)

1.基础排序算法 2.二次排序算法 3.更高级别排序 4.排序算法内幕 1.基础排序算法sc.textFile("/data/putfile.txt").flatMap(_.split(" "...
  • sundujing
  • sundujing
  • 2016-05-13 23:28:10
  • 5997

java8实现spark wordcount并且按照value排序输出

最近在学习spark,本来应该是使用scala编程,但是无奈scala没接触过,还得学,就先使用java的spark api练练手,其实发现java8的函数式编程跟scala很多地方异曲同工啊,搞定s...
  • jacklin929
  • jacklin929
  • 2016-12-14 15:26:59
  • 2383

Spark排序算法!! 使用java开发 自定义key值 进行二次排序 深入解析!

Spark使用JAVA开发的二次排序 【数据文件Input】 2 3  4 1  3 2  4 3  8 7  2 1 【运行结果Output】 2 1  2 3  3 2  ...
  • duan_zhihua
  • duan_zhihua
  • 2016-02-28 20:36:55
  • 2538

SparkSQL之排序,保存数据

def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("ScalaSparkSQLJson")...
  • tangshiweibbs
  • tangshiweibbs
  • 2017-04-19 13:42:42
  • 1156

Spark核心RDD:Sort排序详解

1.sortByKey 无可非议sortByKey是Spark的最常用的排序,简单的案例暂且跳过,下面给一个非简单的案例,让我进入排序之旅 对下面简单元祖,要求先按元素1升序,若元素1相同,则按元素3...
  • jiangpeng59
  • jiangpeng59
  • 2016-10-26 23:27:28
  • 11779

Spark实例WordCount(统计+排序)

实例描述 读文本 分词 去标点 词频统计 排序 代码片段val conf = new SparkConf().setAppName("WordCount").setMaster("local[4]")...
  • iKinson
  • iKinson
  • 2017-01-18 17:30:52
  • 841

Spark的高级排序(二次排序)

spark 二次排序
  • wuxintdrh
  • wuxintdrh
  • 2017-05-30 11:20:56
  • 1953

spark+java1.8+lamda wordCount 实例,并且实现按单词出现的次数的倒序排序

spark+java1.8+lamda wordCount 实例,并且实现按单词出现的次数的倒序排序
  • jiangzeyun
  • jiangzeyun
  • 2016-09-16 16:33:19
  • 1391
收藏助手
不良信息举报
您举报文章:spark排序版本的woldcount
举报原因:
原因补充:

(最多只允许输入30个字)