spark streaming scala-updateStateByKey 进行key的累加统计

updateStateByKey 解释: 
以DStream中的数据进行按key做reduce操作,然后对各个批次的数据进行累加 
在有新的数据信息进入或更新时,可以让用户保持想要的任何状。使用这个功能需要完成两步: 
1) 定义状态:可以是任意数据类型 
2) 定义状态更新函数:用一个函数指定如何使用先前的状态,从输入流中的新值更新状态。 

对于有状态操作,要不断的把当前和历史的时间切片的RDD累加计算,随着时间的流失,计算的数据规模会变得越来越大。

具体看代码

import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds

/**
 * @author jhp
  *         spark streaming 保持key的状态统计
 */
object UpdateStateByKeyWordCount {
  
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
        .setMaster("local[2]")  
        .setAppName("UpdateStateByKeyWordCount")
    val ssc = new StreamingContext(conf, Seconds(5))
    ssc.checkpoint("hdfs://spark1:9000/wordcount_checkpoint")  
    
    val lines = ssc.socketTextStream("spark1", 9999)
    val words = lines.flatMap { _.split(" ") }   
    val pairs = words.map { word => (word, 1) }
    //前一次的key的数量和后一次key的数量的统计
    val wordCounts = pairs.updateStateByKey((values: Seq[Int], state: Option[Int]) => {
      var newValue = state.getOrElse(0)    
      for(value <- values) {
        newValue += value
      }
      Option(newValue)  
    })
    
    wordCounts.print()  
    
    ssc.start()
    ssc.awaitTermination()
  }
  
}

阅读更多
上一篇spark streaming scala 过滤黑名单
下一篇java 设计模式-策略模式
想对作者说点什么? 我来说一句

spark streaming

2018年03月14日 1.37MB 下载

没有更多推荐了,返回首页

关闭
关闭