前辍表达式,中辍表达式,后辍表达式详解

本文深入探讨了前辍、中辍和后辍表达式的基本概念及其在计算机科学中的应用。前辍表达式(逆波兰表示法)以栈操作为主,避免括号使用;中辍表达式是我们常见的运算符在操作数之间的形式;后缀表达式(后缀表示法)则将运算符置于操作数之后。三种表达式各有优缺点,广泛用于编译原理、解析器设计等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/*对于科学计算器的算法运用,有简单的算法也有难的算法,
比如我博客中的基本功能的算法代码,思维简单,但是代码编写起来却是麻烦有难度。
所以牛逼的大神么就搞出了几种牛逼的表达式,通过运用数据结构-栈-的优势,
充分的利用了他的递归性,达到了让人想象不到的高效率及便利性。
所以在这里给大家说说清楚,以免大家遇到问题时可以非常快的解决。
首先介绍一个概念,叫做中辍表达式
例子:
1+2-3*(4-5)
1+2*(3-4)-5*6
这些生活中,用于数学运算的就是中辍表达式
他可以用二叉树的形式表现出来。
下图是第一个式子的二叉树:*/


/*好,介绍完了简单的中辍表达式,开始介绍前辍表达式:
所谓的前辍表达式是指将运算符放在操作数的前面。
中辍表达式:1+2-3*(4-5)  ------>>>>>>>>前辍表达式:- + 1 2 * 3 - 4 5
用前辍表达式进行计算的方法,从左
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值