- 博客(9)
- 收藏
- 关注
原创 论文分享(7)----TARDB-Net: triple-attention guided residual dense and BiLSTM networks
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档TARDB-Net: triple-attention guided residual dense and BiLSTM networks for hyperspectral image classification前言一、问题定义二、Model1.三重注意力机制2.残差和密接网络3.密接网络融合策略4.双向长短时记忆三、实验结果总结前言高光谱遥感图像有着很多高维特征和丰富的空间和光谱信息。这使得特征提取很困难,针对这个问题,本文提.
2022-05-16 18:29:31 637
原创 论文分享(5)----Attention-based multimodal contextual fusion for sentiment and emotion classification
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档“Attention-based multimodal contextual fusion for sentiment and emotion classification using bidirectional LSTM”前言一、问题定义二、Model1.特征提取2.过往特征融合方法3.本文方法4.模型图三、实验结果总结前言现如今,互联网上有着大量多模态的信息需要进行情感抽取,为了提高抽取准确率,本文提出了一种基于注意力机制的多模.
2022-05-13 17:01:36 850
原创 论文分享(5)----SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、问题定义二、Model1.生成器Generator2.蒙特卡洛算法3.鉴别器Discrimination4.生成器G参数更新三、总结前言Generative Adversarial Net (GAN)通过鉴别器Discrimination去指导训练Generator在图像领域已经取得成功,但是对于生成句子来说效果往往不尽人意,是因为文本数据是离散的,鉴别器很那捕获离散输出的loss,并将梯度传输给生成器。另一个原因是.
2022-05-06 19:21:03 479
原创 SeqGAN----Exposure Bias问题
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Exposure Bias二、现有方法1.Scheduled Sampling2.评价指标三、GAN的应用总结前言本文是作者在学习SeqGAN时,对于GAN在序列任务上问题的具体分析。通过阅读GAN相关的研究资料,整理了如下问题提示:以下是本篇文章正文内容,下面案例可供参考一、Exposure Bias在Bengio等人在2015年的论文中提到的暴露偏差问题,那么在了解什么是Exposure Bias,需要.
2022-05-05 18:57:12 1425
原创 论文分享(4)---- OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNING)----元学习meta-lstm
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档论文分享(4)---- OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNING摘要一、问题定义二、Model1. 模型定义2. 模型参数共享和预处理3. 梯度更新简化总结摘要尽管深度学习在数据量充足的领域已经取得了很大的成功,但是它们很难在数据量匮乏的情况下发挥。这是因为现有的优化策略都是基于梯度进行更新,由于参数量的缘由,这种梯度更新的方式需要更多的step才能达到收敛。针对这一问题,作者提出了.
2022-05-03 19:00:11 1190
原创 论文分享(3)----DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档论文分享(3)----DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations前言一、摘要二、模型解析1.定义问题2.Text Features3.Model3.1感知阶段3.2认知阶段4.模型图和结果总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了.
2022-05-02 19:21:35 1644
原创 python虚拟环境迁移
Python虚拟环境迁移以及关键问题:虚拟环境迁移:例如:日常科研工作中,经常会遇到更换不同设备去运行程序,这个时候如果去在新设备上重新配置环境,会十分麻烦而且容易出错和遗漏。因此,合理的利用环境迁移可以十分便捷和快速。接下来将会详细叙述具体操作流程和关键问题。具体流程:1.读取源环境下的配置信息pip freeze>D:/requirements.txt尽量表明存储地址,寻找起来方便快捷,避免不必要的错误2.在新设备下首先是通过conda创建并激活新环境conda create
2021-12-18 21:19:51 923
原创 论文分享(2)MASAD: A Large-Scale Dataset for Multimodal Aspect-Based Sentiment Analysis
文章目录摘要一、引言二、正文1.相关工作2.数据部分2.1 任务描述2.2 数据集3.模型部分3.1 特征表示3.2 对抗训练3.3 多模态交互3.4 AE任务3.5 AP任务3.6 联合训练4.实验结果三.总结摘要提示:以下是本篇文章正文内容,下面案例可供参考首先是近年来情感分析主要聚焦判定给定方面的情感极性,而在多模态的情感分析,特别是融合视觉信息上研究很少。但是多模态信息变得越来越流行,与此同时不同模态的信息可以帮助提取给定方面的情感。在缺少这方面研究的情况之下,本文提出一种多模态交互模型去学
2021-11-03 20:06:41 786
原创 2021-01-01
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言TITLE:A BILINGUAL GENERATIVE TRANSFORMER FOR SEMANTIC SENTENCE EMBEDDING一、Sentence Embedding History And Function二、Model1.引入库2.读入数据总结前言**TITLE:A BILINGUAL GENERATIVE TRANSFORMER FOR SEMANTIC SENTENCE EMBEDDING**
2021-01-04 15:32:30 183
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人