函数的增长

当输入规模足够大,使得只有运行时间的增长量级有关时,我们要研究算法的渐近效率。我们关心的是,在极限中,算法的运行时间如何随着输入规模的变大而增加。从而引出了渐近紧确界的概念。

渐近紧确界

当研究插入排序算法时,它的最坏情况是 a n 2 + b n + c an^2+bn+c an2+bn+c,其中 a a a b b b c c c是常量,去除一些细节后,我们把插入排序的运行时间写成渐近描述 Θ ( n 2 ) \Theta(n^2) Θ(n2),用来刻画插入排序算法的运行时间。

以下是三种渐近符号的描述

  1. Θ ( g ( n ) ) = { f ( n ) : 存 在 正 常 量 c 1 、 c 2 、 n 0 , 使 得 对 所 有 的 n ≥ n 0 , 有 0 ≤ c 1 g ( n ) ≤ f ( n ) ≤ c 2 g ( n ) } \Theta(g(n))=\{f(n):存在正常量c_1、c_2、n_0,使得对所有的n \ge n_0,有0 \le c_1g(n) \le f(n) \le c_2g(n) \} Θ(g(n))={ f(n):c1c2n0使nn00c1g(n)f(n)c2g(n)}
    Θ ( g ( n ) ) \Theta(g(n)) Θ(g(n))被称为渐近紧确界
  2. O ( g ( n ) ) = { f ( n ) : 存 在 正 常 量 c 、 n 0 , 使 得 对 所 有 的 n ≥ n 0 , 有 0 ≤ f ( n ) ≤ c g ( n ) } O(g(n))=\{f(n):存在正常量c、n_0,使得对所有的n \ge n_0,有0 \le f(n) \le cg(n) \} O(g(n))={ f(n):cn0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值