自由粒子的量子波包演化:从薛定谔方程到Python动画(附GIF代码)

在量子力学中,薛定谔方程是描述粒子行为的核心方程。不同于经典力学,粒子在量子力学中的位置和动量无法同时准确确定,而是以概率的形式存在。今天,我们将通过一个完整的Python代码,直观展示自由粒子的波函数是如何随时间扩散的。文末附上GIF导出方法,玩转量子力学中的波动现象!

1. 从经典粒子到量子波函数

在经典物理中,自由粒子(没有外力作用)应该保持静止或做匀速直线运动。然而,在量子力学中,自由粒子的行为并不像经典粒子那样简单。在量子力学的框架下,粒子的状态由一个波函数 ψ ( x , t ) \psi(x, t) ψ(x,t)描述,这个波函数告诉我们粒子在某个位置 x x x处的概率分布。

对于一个自由粒子,波函数的演化由薛定谔方程给出:

i ℏ ∂ ∂ t ψ ( x , t ) = − ℏ 2 2 m ∂ 2 ∂ x 2 ψ ( x , t ) i\hbar \frac{\partial}{\partial t} \psi(x, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x, t) itψ(x,t)=2m2x22ψ(x,t)

其中:
- i i i是虚数单位,
- ℏ \hbar 是约化普朗克常数,
- m m m是粒子的质量,
- ∂ ∂ t ψ ( x , t ) \frac{\partial}{\partial t} \psi(x, t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值