hdu 6372 sacul

题解:一个图的K次方相当于 i走k步到j这个点。于是走过的点有i,j1,j2....jk。其中jk为最后的终点。根据卢卡斯定理:i>=j1>=j2....>=jk。所以这相当于隔板法从p个元素中选j+1个可重复的元素。即C(j+p,j+1) = C(j+p,p-1)。且P进制中每一位是单独考虑的。

所以有F[i][j] = \left ( C_{j+p}^{p-1} \right )^{i}

ans = \sum _{j=1}^{k}\sum _{i=1}^{n}\left ( C_{j+p}^{p-1} \right )^{i}

注意事项:后面等差数列有a-1做逆元的,有a-1 = 0的情况要特殊考虑!!

#include"bits/stdc++.h"
using namespace std;
typedef long long LL;
const int MX = 13e5+7;
const int mod = 1e9+7;
int prime[MX],tt;
bool no_prime[MX];
LL inv[MX],fac[MX];

LL qpow(LL a, LL n, LL mod)
{
    LL ret = 1;
    a %= mod;
    while(n)
    {
        if(n&1) ret = ret*a%mod;
        a = a*a%mod;
        n >>= 1;
    }
    return ret;
}

void init()
{
    int n = MX - 7;
    for(int i = 2; i <= n; i++){
        if(!no_prime[i]) prime[++tt] = i;
        for(int j = 1; j <= tt && i*prime[j] <= n; j++){
            no_prime[i*prime[j]] = 1;
            if(!i%prime[j]) break;
        }
    }
    int p = prime[100000];
    fac[0] = fac[1] = inv[0] = inv[1] = 1;
    for(int i = 2; i <= p; i++) fac[i] = fac[i-1]*i%mod;
    inv[p] = qpow(fac[p],mod-2,mod);
    for(int i = p; i > 2; i--) inv[i-1] = inv[i]*i%mod;
}

void solve()
{
    int c,n,k;
    scanf("%d%d%d",&c,&n,&k);
    assert( n > 0 && n <= 1000000000 && c > 0 && c <= 100000 && k > 0 && k <= 100000);
    LL p = prime[c];

    LL f = fac[p], ans = 0;
    for(int j = 1; j <= k; j++){
        f = f*(p+j)%mod;
        LL a = f*inv[p-1]%mod*inv[j+1]%mod;
        //除数为0的逆元要单独考虑
        if(a > 1) ans = ((ans + (qpow(a,n+1,mod) - a+mod) *qpow(a-1,mod-2,mod)) )%mod;
        else ans = (ans+n)%mod;
    }
    cout<<ans<<endl;
}

int main()
{
    init();
    int T;
    for(scanf("%d",&T); T; T--)
        solve();
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值