- 博客(4)
- 收藏
- 关注
原创 2020-12-26
Deep Learning Enabled Data Offloading With Cyber Attack Detection Model in Mobile Edge Computing SystemsA Reinforcement Learning and Blockchain-Based Trust Mechanism for Edge Networks
2020-12-28 14:38:23 143
原创 2020-12-22
对于边缘计算缓存的安全策略Security in Mobile Edge Caching with Reinforcement LearningL. Xiao, X. Wan, C. Dai, X. Du, X. Chen and M. Guizani, “Security in Mobile Edge Caching with Reinforcement Learning,” in IEEE Wireless Communications, vol. 25, no. 3, pp. 116-122, J
2020-12-22 19:54:04 760 1
原创 学习周报_2
**卸载策略**卸载策略三大种将目前常见的卸载策略按计算卸载的性能需求划分为最小化时延、最小化能耗、最大化收益3种主要类型。最小化时延的卸载策略,即在卸载过程中将传输数据及进行计算所耗 费的总时间降到最少;最小化能耗的卸载策略,即在满足移动 终端时间延迟约束的条件下,力求在计算卸载的整个过程中 最小化移动终端消耗的能量;最大化收益的卸载策略,即根据 处理任务的实际需要将时间延迟与能量消耗这两个指标进行加权求和以获得最小值,使得移动终端或由移动终端及边缘 服务器构成的整体系统的总花费最小。个人理
2020-12-11 15:07:26 431
原创 学习周报_1
计算卸载决策通过将计算和存储资源广泛地分布到更接近用户或数据源的网络边缘,移动边缘计算(Mobile Edge Computing, MEC)支持在无线接入网内完成移动应用的计算卸载过程,大幅降低了网络的端到端时延,并有效减轻了核心网和数据中心的处理压力。计算卸载决策,包括用户侧卸载决策(如任务是否卸载、如何卸载以及何时卸载)和运营商侧卸载决策(如是否允许用户卸载、分配多少资源进行卸载),是MEC能否提升用户体验的关键。由于MEC环境的复杂性,影响卸载决策的因素众多,如何设计最优的卸载决策策略
2020-12-09 10:35:18 1702 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人