- 博客(0)
- 资源 (7)
- 收藏
- 关注
Wavelet-Based Statistical Signal Processing Using Hidden Markov Models,,,HMM
Wavelet-Based Statistical Signal Processing
Using Hidden Markov Models,,,,可以运行,,,有文献下载地址
2018-04-22
Wavelet-Based Statistical Signal Processing Using Hidden Markov Models,,,HMM
运行成功,带文献 --Wavelet-Based Statistical Signal Processing
Using Hidden Markov Models
2018-04-22
CNN 卷积神经网络
The first CNN appeared in the work of Fukushima in 1980 and was called Neocognitron. The basic architectural ideas behind the CNN (local receptive fields,shared weights, and spatial or temporal subsampling) allow such networks to achieve some degree of shift and deformation invariance and at the same time reduce the number of training parameters.
Since 1989, Yann LeCun and co-workers have introduced a series of CNNs with the general name LeNet, which contrary to the Neocognitron use supervised training. In this case, the major advantage is that the whole network is optimized for the given task, making this approach useable for real-world applications.
LeNet has been successfully applied to character recognition, generic object recognition, face detection and pose estimation, obstacle avoidance in an autonomous robot etc.
myCNN class allows to create, train and test generic convolutional networks (e.g., LeNet) as well as more general networks with features:
- any directed acyclic graph can be used for connecting the layers of the network;
- the network can have any number of arbitrarily sized input and output layers;
- the neuron’s receptive field (RF) can have an arbitrary stride (step of local RF tiling), which means that in the S-layer, RFs can overlap and in the C-layer the stride can differ from 1;
- any layer or feature map of the network can be switched from trainable to nontrainable (and vice versa) mode even during the training;
- a new layer type: softmax-like M-layer.
The archive contains the myCNN class source (with comments) and a simple example of LeNet5 creation and training.
All updates and new releases can be found here: http://sites.google.com/site/chumerin/projects/mycnn
2018-04-22
CNN 卷积神经网络
mdCNN is a Matlab framework for Convolutional Neural Network (CNN) supporting 1D, 2D and 3D kernels.
Network is Multidimensional, kernels are in 3D and convolution is done in 3D. It is suitable for volumetric input such as CT / MRI / video sections. But can also process 1d/2d images.
Framework supports all the major features such as dropout, padding, stride, max pooling, L2 regularization, momentum, cross entropy, MSE.
The framework Its completely written in Matlab, No dependencies are needed. It is pretty optimized, when training or testing all of the CPU cores are participating using Matlab Built-in Multi-threading.
There are several examples for training a network on MNIST, CIFAR10, 1D CNN, and MNIST3d - a special expansion of MNIST dataset to 3D volumes.
MNIST Demo will download the dataset and start the training process. It will reach 99.2% in several minutes. CIFAR10 demo reaches about 80% but it takes longer to converge.
For 3D volumes there is a demo file that will creates a 3d volume from each digit in MNIST dataset, then starts training on the 28x28x28 samples. It will reach similar accuracy as in the 2d demo
This framework was used in a project classifying Vertebra in a 3D CT images.
=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~
To run MNIST demo: Go into the folder 'Demo/MNIST' , Run 'demoMnist.m' file. After 15 iterations it will open a GUI where you can test the network performance. In addition layer 1 filters will be shown.
To run MNIST3D demo: Go into the folder 'Demo/MNIST3d' , and run 'demoMnist3D.m' file.
=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~
Check the 'mdCNN documentation.docx' file for more specification on how to configure a network
For general questions regarding network design and training, please use this forum
https://groups.google.com/forum/#!forum/mdcnn-multidimensional-cnn-library-in-matlab
Any other issues you can contact me at hagaygarty@gmail.com
Please use matlab 2014 and above
2018-04-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人