EM最大期望算法与jensen不等式

参考资料:https://blog.csdn.net/androidlushangderen/article/details/42921789

介绍

em算法是一种迭代算法,用于含有隐变量的参数模型的最大似然估计或极大后验概率估计。EM算法,作为一个框架思想,它可以应用在很多领域,比如说数据聚类领域----模糊聚类的处理,待会儿也会给出一个这样的实现例子。

EM算法原理

EM算法从名称上就能看出他可以被分成2个部分,E-Step和M-Step。E-Step叫做期望化步骤,M-Step为最大化步骤。

整体算法的步骤如下所示:

1、初始化分布参数。

2、(E-Step)计算期望E,利用对隐藏变量的现有估计值,计算其最大似然估计值,以此实现期望化的过程。

3、(M-Step)最大化在E-步骤上的最大似然估计值来计算参数的值

4、重复2,3步骤直到收敛。

以上就是EM算法的核心原理,也许您会想,真的这么简单,其实事实是我省略了其中复杂的数据推导的过程,因为如果不理解EM的算法原理,去看其中的数据公式的推导,会让人更加晕的。好,下面给出数据的推导过程,本人数学也不好,于是用了别人的推导过程,人家已经写得非常详细了。

EM算法的推导过程

jensen不等式

在介绍推导过程的时候,需要明白jensen不等式,他是一个关于凸函数的一个定理,直接上公式定义;

 

如果f是凸函数,X是随机变量,那么

      clip_image010

      特别地,如果f是严格凸函数,那么clip_image012当且仅当clip_image014,也就是说X是常量。

      这里我们将clip_image016简写为clip_image018

      如果用图表示会很清晰:

      clip_image019

这里需要解释的是E(X)的值为什么是(a+b)/2,因为有0.5 的概率是a,0.5的概率是b,于是他的期望就是a,b的和的中间值了。同理在y轴上的值也是如此。

EM算法的公式表达形式

EM算法转化为公式的表达形式为:

 

      给定的训练样本是clip_image023,样例间独立,我们想找到每个样例隐含的类别z,能使得p(x,z)最大。p(x,z)的最大似然估计如下:

      clip_image024

然后对这个公式做一点变化,就可以用上jensen不等式了,神奇的一笔来了:

 

可以由前面阐述的内容得到下面的公式:

      clip_image035

      (1)到(2)比较直接,就是分子分母同乘以一个相等的函数。(2)到(3)利用了Jensen不等式。对于每一个样例i,让clip_image032表示该样例隐含变量z的某种分布,clip_image032[1]满足的条件是clip_image034。于是就来到了问题的关键,通过上面的不等式,我们就可以确定式子的下界,然后我们就可以不断的提高此下界达到逼近最后真实值的目的值,那么什么时候达到想到的时候呢,没错,就是这个不等式变成等式的时候,然后再依据之前描述的jensen不等式的说明,当不等式变为等式的时候,clip_image012当且仅当clip_image014,也就是说X是常量,推出就是下面的公式:

 

     再推导下,由于(因为Q是随机变量z(i)的概率密度函数),则可以得到:分子的和等于c(分子分母都对所有z(i)求和:多个等式分子分母相加不变,这个认为每个样例的两个概率比值都是c),再次继续推导;

 

      clip_image070

最后就得出了EM算法的一般过程了:

 

循环重复直到收敛

      (E步)对于每一个i,计算

                  clip_image074

      (M步)计算

                  clip_image075

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值