拉格朗日乘子法和KKT条件

拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解。

对于无约束最优化问题,有很多经典的求解方法,参见无约束最优化方法

拉格朗日乘子法

先来看拉格朗日乘子法是什么,再讲为什么。


这个问题转换为


其中λi0,称为拉格朗日乘子。

下面看一下wikipedia上是如何解释拉格朗日乘子法的合理性的。

现有一个二维的优化问题:


我们可以画图来辅助思考。

绿线标出的是约束g(x,y)=c的点的轨迹。蓝线是f(x,y)的等高线。箭头表示斜率,和等高线的法线平行。

从图上可以直观地看到在最优解处,f和g的法线方向刚好相反(或者说叫梯度共线),即


而满足3的点同时又是4的解。


所以24等价。

新方程F(x,y)在达到极值时与f(x,y)相等,因为F(x,y)达到极值时g(x,y)c总等于零。

KKT条件

先看KKT条件是什么,再讲为什么。






上面的推导到此中断一下,我们看另外一个式子。


这里的ug都就向量,所以去掉了下标k。另外一些博友不明白上式中maxμminxf(x)=minxf(x)是怎么推出来的,其实很简单,因为f(x)与变量u无关,所以等式成立u无关,所以这个等式就是成立的

联合(7),(8)我们得到minxmaxμL(x,μ)=maxμminxL(x,μ)


我们把maxμminxL(x,μ)称为原问题minxmaxμL(x,μ)的对偶问题,上式表明当满足一定条件时原问题、对偶的解、以及minxf(x)minxf(x)是相同的,且在最优解xμ=0org(x)=0。把x代入(6)maxμL(x,μ)=f(x),由(8)maxμminxL(x,μ)=f(x),所以L(x,μ)=minxL(x,μ),这说明x也是L(x,μ)的极值点,即

最后总结一下:


博文转自:博客园(Orisun)http://www.cnblogs.com/zhangchaoyang/articles/2726873.html


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值