参考:1、百度鉴权认证机制:http://ai.baidu.com/docs#/Auth/top
2、百度文字识别API文档:http://ai.baidu.com/docs#/OCR-API/top
Java版本:Java 1.8.0_161
版本控制:maven-4.0.0
1. 项目.pom文件添加依赖
<dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.31</version> </dependency> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpclient</artifactId> <version>4.5.2</version><!--$NO-MVN-MAN-VER$--> </dependency>
2. 根据API_KEY,SECRET_KEY获取access_token
先在百度开发者中心申请一个“通用文字识别”项目,创建完成后获取对应的项目API_KEY,SECRET_KEY,这两个参数在使用API用于生成access_token。
获取这些参数步骤:在百度开发者中心申请一个“通用文字识别”项目,点击项目进去就可以获取到这些参数。package com.qytkj.BluetoothWaterControl.operation.check;
import org.json.JSONObject;
import java.io.BufferedReader;
import java.net.HttpURLConnection;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.List;
import java.util.Map;
/**
- 获取access_token
- @author hudaojin
- @date Dec 25, 2018
*/
public class AuthService {
/**
* 获取权限token
* @return 返回示例:
* {
* "access_token": "24.460da4889caad24cccdb1fea17221975.2592000.1491995545.282335-1234567",
* "expires_in": 2592000
* }
*/
public static String getAuth() {
// 官网获取的 API Key 替换成自己项目的
String clientId = "**";
// 官网获取的 Secret Key 替换成自己项目的
String clientSecret = "**";
return getAuth(clientId, clientSecret);
}
/**
* 获取API访问token
* 该token有一定的有效期,需要自行管理,当失效时需重新获取.
* @param ak - 百度云官网获取的 API Key
* @param sk - 百度云官网获取的 Securet Key
* @return assess_token 示例:
* "24.460da4889caad24cccdb1fea17221975.2592000.1491995545.282335-1234567"
*/
private static String getAuth(String ak, String sk) {
// 获取token地址
String authHost = "https://aip.baidubce.com/oauth/2.0/token?";
String getAccessTokenUrl = authHost
// 1. grant_type为固定参数
+ "grant_type=client_credentials"
// 2. 官网获取的 API Key
+ "&client_id=" + ak
// 3. 官网获取的 Secret Key
+ "&client_secret=" + sk;
try {
URL realUrl = new URL(getAccessTokenUrl);
// 打开和URL之间的连接
HttpURLConnection connection = (HttpURLConnection) realUrl.openConnection();
connection.setRequestMethod("GET");
connection.connect();
// 获取所有响应头字段
Map<String, List<String>> map = connection.getHeaderFields();
// 遍历所有的响应头字段
for (String key : map.keySet()) {
System.err.println(key + "--->" + map.get(key));
}
// 定义 BufferedReader输入流来读取URL的响应
BufferedReader in = new BufferedReader(new InputStreamReader(connection.getInputStream()));
StringBuilder result = new StringBuilder();
String line;
while ((line = in.readLine()) != null) {
result.append(line);
}
/**
* 返回结果示例
*/
System.err.println("result:" + result);
JSONObject jsonObject = new JSONObject(result.toString());
return jsonObject.getString("access_token");
} catch (Exception e) {
System.err.printf("获取token失败!");
e.printStackTrace(System.err);
}
return null;
}
//public static void main(String[] args) {
// getAuth();
//}
}
3. 将图片转化成urlencode的工具类
package com.qytkj.BluetoothWaterControl.operation.check;
import sun.misc.BASE64Encoder;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URLEncoder;
/**
- 图片转化UrlEncode结果
- @Author : hudaojin
- @Date Dec 25, 2018
*/
public class BaseImg64 {
/**
* 将一张本地图片转化成Base64字符串
* @param imgPath 本地图片地址
* @return 图片转化base64后再UrlEncode结果
*/
public static String getImageStrFromPath(String imgPath) {
InputStream in;
byte[] data = null;
// 读取图片字节数组
try {
in = new FileInputStream(imgPath);
data = new byte[in.available()];
in.read(data);
in.close();
} catch (IOException e) {
e.printStackTrace();
}
// 对字节数组Base64编码
BASE64Encoder encoder = new BASE64Encoder();
// 返回Base64编码过再URLEncode的字节数组字符串
return URLEncoder.encode(encoder.encode(data));
}
}
4. 调用百度API接口的方法,获取识别结果
package com.qytkj.BluetoothWaterControl.operation.check;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.util.EntityUtils;
import java.io.File;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
/**
- 图像中的文字识别
*/
public class Check {
private static final String POST_URL = “https://aip.baidubce.com/rest/2.0/ocr/v1/general_basic?access_token=” + AuthService.getAuth();
/**
* 识别本地图片的文字
*
* @param path 本地图片地址
* @return 识别结果,为json格式
* @throws URISyntaxException URI打开异常
* @throws IOException io流异常
*/
public static String checkFile(String path) throws URISyntaxException, IOException {
File file = new File(path);
if (!file.exists()) {
throw new NullPointerException("图片不存在");
}
String image = BaseImg64.getImageStrFromPath(path);
String param = "image=" + image;
return post(param);
}
/**
* @param url 图片url
* @return 识别结果,为json格式
*/
public static String checkUrl(String url) throws IOException, URISyntaxException {
String param = "url=" + url;
return post(param);
}
/**
* 通过传递参数:url和image进行文字识别
*
* @param param 区分是url还是image识别
* @return 识别结果
* @throws URISyntaxException URI打开异常
* @throws IOException IO流异常
*/
private static String post(String param) throws URISyntaxException, IOException {
//开始搭建post请求
HttpClient httpClient = new DefaultHttpClient();
HttpPost post = new HttpPost();
URI url = new URI(POST_URL);
post.setURI(url);
//设置请求头,请求头必须为application/x-www-form-urlencoded,因为是传递一个很长的字符串,不能分段发送
post.setHeader("Content-Type", "application/x-www-form-urlencoded");
StringEntity entity = new StringEntity(param);
post.setEntity(entity);
HttpResponse response = httpClient.execute(post);
System.out.println(response.toString());
if (response.getStatusLine().getStatusCode() == 200) {
String str;
try {
/*读取服务器返回过来的json字符串数据*/
str = EntityUtils.toString(response.getEntity());
System.out.println(str);
return str;
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
return null;
}
public static void main(String[] args) {
String path = "/Users/hudaojin/myPictures/test1.png";
try {
checkFile(path);
checkUrl("图片的URL");
} catch (URISyntaxException | IOException e) {
e.printStackTrace();
}
}
}
5. 接下来运行项目Check.java类测试了
测试图片:
测试结果:
{“log_id”: 6655930422357056121, “words_result_num”: 4, “words_result”: [{“words”: “之所以写下这篇文章,是因为在实践中使用时,发现在识别整张图时,准确率降低。尤其是中文,英文,字符,数字,水印都有的时候。”}, {“words”: “出错率很高。原先一直认为是水印的问题。结果将图片二值化以后,没有水印,识别准确度依旧很低。”}, {“words”: “偶然的情况,使用局部区域识别,发现,效果很好,准确度大大提高。”}, {“words”: “然后体用api切换中文,英文识别库,很大程度的提高了准确率。”}]}