图像处理
萝卜大力士
这个作者很懒,什么都没留下…
展开
-
保持结构不变的图像降噪及高斯噪声估计
github地址保持结构不变的图像降噪假定图像的区域是同构或者异构的。我们可以逐个处理每个像素,通过检测它的邻域结构类型(异构/同构)来估计像素的真实密度,从而减少噪声。设 X(p)X(p)X(p) 为真实图像,Y(p)Y(p)Y(p) 为被高斯噪声污染的后的观测图像,n(p)∈N(0,σ2)n(p)∈N(0,σ2)n(p)\in N(0,\sigma^2) 为均值为 0 ,方差为 σ...原创 2018-03-22 09:25:59 · 3368 阅读 · 1 评论 -
过分割后处理——区域融合 ( Region Merging)
github 分水岭算法对噪声比较敏感,容易出现过分割。常见的处理过分割的方法包括: 1). 预处理,图像降噪; 2). 应用标记 (marker)。选择标记需要用户的参与,图像结构的先验知识; 3). 区域融合 本篇博客介绍,基于区域近邻图(RegionAdjacency Graph ,RAG)融合的过分割后处理方法。 此方法依赖于已分割的区域个数和噪声方差,个数越多效果越...原创 2018-03-22 09:30:21 · 8791 阅读 · 12 评论 -
形态学分水岭分割——应用标记
形态学分水岭直接分割梯度图像会产生过分割。本篇博文参考matlab中的示例以及冈萨雷斯版的《数字图像处理》总结了处理形态学分水岭分割的一般步骤。主要步骤包括两部分: 1. 平滑预处理。 过分割的一部分原因是图像中有许多尺寸很小的局部最小值,平滑处理是消除很小细节的有效手段。本文利用的是基于重构的开闭操作来消除细节。 2. 应用标记 内部标记被定义为:(1)被更高“海...原创 2018-03-22 09:32:24 · 2393 阅读 · 0 评论 -
局部自适应阈值分割方法
github地址:https://github.com/radishgiant/ThresholdAndSegment.gitLocal_Yanowitz由于光照的影响,图像的灰度可能是不均匀分布的,此时单一阈值的方法分割效果不好。Yanowitz提出了一种局部阈值分割方法。结合边缘和灰度信息找到阈值表面(treshhold surface)。在阈值表面上的就是目标。 算法的主要...原创 2018-03-22 09:34:47 · 31253 阅读 · 6 评论