Win10使用Anaconda安装TensorFlow-gpu

Win10 Anaconda安装TensorFlow-gpu

1.确定自己的环境
2.安装anaconda
3.安装tensorflow-gpu
4.安装CUDA Toolkit + cuDNN

1.确定自己的环境

tensorflow和python版本有对应关系,目前是使用我之前用的是python3.6,一定要注意自己的版本号,搞不清楚对应关系的,去这个博客看看
tensorflow和python的对应关系

2.安装anaconda

在这里我下载的是anaconda3 5.1.0版本,这样安装完就是python3.6版本,现在官网上的是3.7.
打开安装程序
在这里插入图片描述
换个安装位置
在这里插入图片描述
这里给红色的勾上,是自动添加环境变量
在这里插入图片描述
剩下就是等待安装完毕了。

3.安装tensorflow-gpu

  1. 创建一个新的虚拟环境
conda create -n tensorflow pip python=3.6
  1. 激活虚拟环境
activate tensorflow
  1. 安装tensorflow-GPU 这个是1.10版本的一定要注意
pip install tensorflow-gpu==1.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

然后继续等待就安装完毕了

4.安装CUDA Toolkit + cuDNN

这里安装的是CUDA9.0,一定要注意安装的是9.0。
CUDA下载地址
安装的话选择默认安装地址,别瞎改。
等待安装完毕
然后下载cuDNN,这里注意版本是7.4.1 for CUDA9.0.别下载错了
cuDNN下载地址
将cuDNN解压,解压出来的全部文件放到对应的CUDA的安装目录下也就是这个目录下面C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0
添加环境变量
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\libnvvp

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\lib\x64

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin

到此全部完成

测试一下是否安装成功。
打开anaconda prompt
输入activate tensorflow进入tensorflow环境
输入python进入python编译器
输入如下代码

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

出现gpu信息就说明安装成功了
在这里插入图片描述
希望对大家有帮助
附上自己环境中所有版本号
#Name Version Build Channel
absl-py 0.9.0
astor 0.8.1
attrs 19.3.0 py_0
backcall 0.1.0 py36_0
bert4keras 0.5.9
bleach 3.1.0 py_0
boto3 1.12.28
botocore 1.15.28
ca-certificates 2020.1.1 0
cachetools 4.0.0
certifi 2019.11.28 py36_1
chardet 3.0.4
colorama 0.4.3 py_0
colorlog 4.1.0
decorator 4.4.2 py_0
defusedxml 0.6.0 py_0
docutils 0.15.2
download 0.3.4
entrypoints 0.3 py36_0
gast 0.3.3
gensim 3.8.1
google-api-core 1.16.0
google-auth 1.11.3
google-cloud-core 1.3.0
google-cloud-storage 1.26.0
google-resumable-media 0.5.0
googleapis-common-protos 1.51.0
grpcio 1.27.2
h5py 2.10.0
icu 58.2 ha66f8fd_1
idna 2.9
importlib_metadata 1.5.0 py36_0
ipykernel 5.1.4 py36h39e3cac_0
ipython 7.13.0 py36h5ca1d4c_0
ipython_genutils 0.2.0 py36_0
ipywidgets 7.5.1 py_0
jedi 0.16.0 py36_0
jieba 0.42.1
jinja2 2.11.1 py_0
jmespath 0.9.5
joblib 0.14.1
jpeg 9b hb83a4c4_2
jsonschema 3.2.0 py36_0
jupyter 1.0.0 py36_7
jupyter_client 6.0.0 py_0
jupyter_console 6.1.0 py_0
jupyter_core 4.6.1 py36_0
kashgari 0.1.7
kashgari 1.1.1
Keras 2.2.0
Keras-Applications 1.0.2
keras-bert 0.25.0
keras-embed-sim 0.7.0
keras-gpt-2 0.14.0
keras-layer-normalization 0.2.0
keras-multi-head 0.14.0
keras-pos-embd 0.6.0
keras-position-wise-feed-forward 0.1.0
Keras-Preprocessing 1.0.1
keras-self-attention 0.31.0
keras-transformer 0.11.0
libpng 1.6.37 h2a8f88b_0
libsodium 1.0.16 h9d3ae62_0
m2w64-gcc-libgfortran 5.3.0 6
m2w64-gcc-libs 5.3.0 7
m2w64-gcc-libs-core 5.3.0 7
m2w64-gmp 6.1.0 2
m2w64-libwinpthread-git 5.0.0.4634.697f757 2
Markdown 3.2.1
markupsafe 1.1.1 py36he774522_0
mistune 0.8.4 py36he774522_0
msys2-conda-epoch 20160418 1
nbconvert 5.6.1 py36_0
nbformat 5.0.4 py_0
notebook 6.0.3 py36_0
numpy 1.16.4
openssl 1.1.1e he774522_0
pandas 1.0.3
pandoc 2.2.3.2 0
pandocfilters 1.4.2 py36_1
parso 0.6.2 py_0
pickleshare 0.7.5 py36_0
pip 20.0.2 py36_1
prometheus_client 0.7.1 py_0
prompt_toolkit 3.0.3 py_0
protobuf 3.11.3
pyasn1 0.4.8
pyasn1-modules 0.2.8
pygments 2.6.1 py_0
pyqt 5.9.2 py36h6538335_2
pyrsistent 0.15.7 py36he774522_0
python 3.6.10 h9f7ef89_0
python-dateutil 2.8.1 py_0
pytz 2019.3
pywin32 227 py36he774522_1
pywinpty 0.5.7 py36_0
PyYAML 5.3.1
pyzmq 18.1.1 py36ha925a31_0
qt 5.9.7 vc14h73c81de_0 []
qtconsole 4.7.1 py_0
qtpy 1.9.0 py_0
regex 2020.2.20
requests 2.23.0
rsa 4.0
s3transfer 0.3.3
scikit-learn 0.22.2.post1
scipy 1.4.1
send2trash 1.5.0 py36_0
seqeval 0.0.10
setuptools 46.1.1
setuptools 46.1.1 py36_0
sip 4.19.8 py36h6538335_0
six 1.14.0 py36_0
sklearn 0.0
smart-open 1.10.0
sqlite 3.31.1 he774522_0
tensorboard 1.10.0
tensorflow-gpu 1.10.0
termcolor 1.1.0
terminado 0.8.3 py36_0
testpath 0.4.4 py_0
tornado 6.0.4 py36he774522_1
tqdm 4.43.0
traitlets 4.3.3 py36_0
urllib3 1.25.8
vc 14.1 h0510ff6_4
vs2015_runtime 14.16.27012 hf0eaf9b_1
wcwidth 0.1.8 py_0
webencodings 0.5.1 py36_1
Werkzeug 1.0.0
wheel 0.34.2 py36_0
widgetsnbextension 3.5.1 py36_0
wincertstore 0.2 py36h7fe50ca_0
winpty 0.4.3 4
zeromq 4.3.1 h33f27b4_3
zipp 2.2.0 py_0
zlib 1.2.11 h62dcd97_3

发布了5 篇原创文章 · 获赞 0 · 访问量 416
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览