谷歌小恐龙修改无敌刷分

在谷歌浏览器(其他浏览器不可以,因为这是谷歌浏览器自带的)网址栏输入chrome://dino,回车进入小恐龙界面(无网的情况下随便访问一个网页也可以进入这个界面)。
(游戏规则:空格或方向上键即可开始游戏,碰到障碍物游戏结束。空格或方向上键为跳跃,方向下键为下蹲)
在这里插入图片描述
F12​打开控制台,在Console下输入命令,回车执行。
在这里插入图片描述
以下有三条修改命令:
1.修改障碍物(可以用来刷分)
(1)改为true,障碍物消失(相当于无敌状态,死不掉)

Runner.instance_.playingIntro = true

在这里插入图片描述
(2)改为false,障碍物恢复(碰到障碍物就会死亡)

Runner.instance_.playingIntro = false

在这里插入图片描述
2.修改小恐龙移动速度(可以用来刷分)

Runner.instance_.setSpeed(数值);

只要速度足够快就死不了,例如10000
在这里插入图片描述
再把速度调慢,即可自杀得到刷分目的,这样刷分速度比较快。
在这里插入图片描述
3.进入无敌模式(真的是无敌,就是死不掉)

Runner.instance_.gameOver = function(){}

在这里插入图片描述

<think>好的,我现在要帮用户析这段Python异步代码。首先,用户给了一个async def queue_item_execution的函数,我需要理解它的结构和作用。让我先通读一遍代码,看看各个部的功能。 函数使用了一个while True循环,说明这是一个持续运行的异步任务。里面有一个Healthcheck.write_or_update的调用,参数是TimeToKill.AT_QUEUE_RUNNER_LOOP_START.value,这可能是健康检查的一部,用来记录或更新时间戳,确保进程还在运行。 接下来是if self.processmanager_state.queue_is_executing的条件判断。这里检查队列是否正在执行,如果是的话,继续执行下面的逻辑;否则,记录队列暂停的信息,并等待5秒。这应该是一个控制队列是否继续处理任务的开关。 在if块内部,首先调用await self.init_execution()来初始化执行,得到一个requesthandler对象。然后记录日志,显示requesthandler的信息。接下来判断requesthandler是否存在且不等于"Finished",如果是的话,执行await self.task_execution(requesthandler),并重置robot_not_ready_counter计数器。如果requesthandler是"Finished",则跳出循环,结束函数。 如果队列没有在执行,就调用self.log_flooding_protected记录队列暂停的信息,防止日志过多。最后,无论哪种情况,都会等待5秒,通过await asyncio.sleep(5)实现异步等待。 现在,我需要确定这段代码的整体作用。看起来像是一个队列处理器,不断检查队列是否应该执行任务。当队列处于执行状态时,初始化处理程序,执行任务,并根据任务的成功与否重置计数器。如果处理程序返回"Finished",则终止循环;否则,继续循环。 有几个关键点需要注意:Healthcheck的使用可能涉及系统健康监控,确保队列运行正常。TimeToKill可能是一个枚举,定义了不同阶段的检查点。processmanager_state可能是一个状态管理对象,控制队列的执行状态。init_execution方法可能负责准备任务执行的环境或资源,返回的处理程序用于实际的任务执行。 task_execution方法执行具体的任务,可能涉及与机器人或其他外部设备的交互。如果任务成功完成,robot_not_ready_counter会被重置为0,否则保持或增加,这可能用于跟踪设备是否就绪的状态。 log_flooding_protected方法可能带有防止日志过多的机制,比如限流,避免相同信息频繁记录。 用户可能需要了解这段代码的结构和工作流程,或者遇到问题需要调试。可能的疑问点包括:为什么使用异步函数?各个条件判断的具体情况如何处理?Healthcheck和TimeToKill的作用是什么?robot_not_ready_counter的管理逻辑等。 在解释时,我需要步骤说明循环的流程,各个条件支的作用,以及异步等待的重要性。同时,注意代码中的异常处理是否周全,比如是否有处理init_execution可能抛出的异常,或者任务执行失败的情况。但代码中没有显示异常处理部,可能需要用户注意这一点。 总结,这段代码是一个异步队列处理器,持续检查队列状态,执行任务,并根据结果更新状态和计数器,同时进行健康检查和日志记录。确保用户理解各个部的作用,以及整体流程。</think>以下是对代码的逐步析: ### 代码功能概述 这是一个异步队列处理器核心循环,用于持续监听和执行队列中的任务。采用`asyncio`实现非阻塞式任务调度,包含健康检查、执行状态控制、错误恢复机制。 --- ### 代码结构解析 ```python async def queue_item_execution(self): while True: # 永久循环保持队列监听 # 健康检查标记(系统级探针) Healthcheck.write_or_update(TimeToKill.AT_QUEUE_RUNNER_LOOP_START.value) # 核心逻辑支 if self.processmanager_state.queue_is_executing: # 阶段1:初始化执行环境 requesthandler = await self.init_execution() # 异步初始化 self.log(logging.INFO, f"requesthandler={requesthandler}") # 阶段2:任务执行控制 if requesthandler and requesthandler != "Finished": await self.task_execution(requesthandler) # 异步执行具体任务 # 成功时重置错误计数器 self.robot_not_ready_counter = 0 if requesthandler.test_successfull_finished else \ self.robot_not_ready_counter # 阶段3:终止条件判断 if requesthandler == "Finished": break # 退出循环 else: # 队列暂停时的日志保护(防机制) self.log_flooding_protected(level=logging.INFO, msg="Queue is paused") # 循环间隔控制 await asyncio.sleep(5) # 异步等待5秒 ``` --- ### 关键组件说明 #### 1. 健康检查机制 ```python Healthcheck.write_or_update(TimeToKill.AT_QUEUE_RUNNER_LOOP_START.value) ``` - **作用**:标记循环开始时间戳,用于外部监控系统存活状态 - **技术细节**: - `TimeToKill` 枚举定义了健康检查点 - 写入/更新时间戳的操作应具备原子性 #### 2. 执行状态控制 ```python if self.processmanager_state.queue_is_executing: ``` - **状态机设计**: - `processmanager_state` 对象管理队列执行状态 - 可通过外部信号动态切换状态(如暂停/恢复) #### 3. 初始化阶段 ```python requesthandler = await self.init_execution() ``` - **预期行为**: 1. 获取队列中下一个待处理项 2. 配执行资源 3. 返回任务处理器对象或状态码 #### 4. 任务执行阶段 ```python await self.task_execution(requesthandler) ``` - **异步特性**: - 使用`await`确保不阻塞事件循环 - 具体执行时间取决于任务复杂度 #### 5. 错误恢复机制 ```python self.robot_not_ready_counter = 0 if ... else self.robot_not_ready_counter ``` - **设计意图**: - 成功时重置计数器实现错误恢复 - 保留原值则为累积错误计数(可能触发熔断机制) --- ### 执行流程图解 ```mermaid graph TD A[循环开始] --> B{队列执行中?} B --> |是| C[初始化执行环境] C --> D{获取到有效处理器?} D --> |是| E[执行具体任务] D --> |否| F{收到终止信号?} F --> |是| G[结束循环] F --> |否| H[继续循环] E --> I[更新设备状态] B --> |否| J[记录暂停状态] J --> H H --> K[等待5秒] K --> A ``` --- ### 异常处理建议 当前代码未显式包含的容错机制: 1. **超时控制**:建议在`task_execution`添加`asyncio.wait_for` ```python await asyncio.wait_for(self.task_execution(requesthandler), timeout=30) ``` 2. **错误回滚**:`init_execution`失败时需释放已配资源 3. **计数器保护**:`robot_not_ready_counter`应设置上限防止溢出 --- ### 性能优化方向 1. **动态休眠间隔**:根据负载情况调整sleep时间 ```python sleep_time = 5 if self.queue.empty() else 0.1 await asyncio.sleep(sleep_time) ``` 2. **批量处理**:支持同时处理多个队列项 3. **优先级队列**:实现带优先级的任务调度 需要根据具体业务场景进一步调整实现细节。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值