模型裁剪
Network Prune 论文阅读笔记
时光机゚
为了我的名字~。~
展开
-
【论文阅读笔记】Data-Driven Sparse Structure Selection for Deep Neural Networks
论文地址:Data-Driven Sparse Structure Selection for Deep Neural Networks代码地址:Pytorch,MXNet,Tensorflow论文总结 本文是结构化裁剪模型的一种方法。其引入额外的尺度因子λ\lambdaλ来对不同维度的输出进行自适应训练(即Data-Driven的意思),通过对尺度因子进行稀疏化约束,得到可以安全裁剪的对象。 作者把本文方法认为是一次到底的,即不需要再retrain的,只裁剪对应尺度因子为0的结构。 尺度因原创 2020-07-09 11:34:04 · 1456 阅读 · 0 评论 -
【论文阅读笔记】Learning Efficient Convolutional Networks through Network Slimming
论文地址:Network Slimming论文总结 本文提出了一种channel-level的裁剪方案,可以通过稀疏化尺度因子(BN层的scaling factor)来裁掉“不重要”的channel。 文中的方案为:在训练时,对BN层的scaling factor施加L1L_1L1正则化,在训练网络的同时得到稀疏化的尺度因子;裁掉低于指定阈值的channel;【(1)设定裁剪的百分比;(2)依据百分比找到所有尺度因子对应的值作为阈值;(3)逐层进行裁剪】对得到的模型进行fine-tune原创 2020-07-08 21:27:18 · 10799 阅读 · 6 评论 -
【论文阅读笔记】Rethinking the value of Network Pruning
论文地址:https://arxiv.org/abs/1810.05270论文总结 论文的中心思想其实就一句话:在通过Prune算法得到了压缩模型后,使用来自大网络的权重进行fine-tune,还不如直接随机初始化训练压缩模型。但需要注意的是,随机初始化训练压缩模型,需要比训练大模型使用更多的epochs,才能获得更好的效果。论文摘要 作者通过数个网络和数据集的prune 测试,得到了三个观察和结论:如果有一个确定的“压缩”模型,训练一个大网络不是必要的;在prune算法中,我们所认为“重原创 2020-07-08 15:26:26 · 2974 阅读 · 5 评论