自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 收藏
  • 关注

原创 面向 K8s 1.33 的 Linux 服务器深度运维实战(CentOS/RedHat/Ubuntu 通用)

内核调优核心:围绕 K8s 1.33 对 cgroup v2、网络、内存的需求,重点调优 TCP 参数、内存隔离、cgroup 配置,禁用 swap;系统裁剪原则:只保留 K8s 必需服务(sshd/containerd/kubelet),边缘节点极致轻量化,减少资源占用;安全加固关键:最小权限(非 root 运行 Pod、禁用危险系统调用)+ 强制访问控制(SELinux/AppArmor)+ 端口封禁,防止 Pod 逃逸和节点入侵。

2025-12-26 15:01:51 664 1

原创 协作体系:推动 “开发 - 运维 - 测试” 跨团队协作,建立代码评审、自动化测试规范(单元测试覆盖率≥80%),研发效率提升 2 倍

跨团队协作体系的核心是 “用技术把流程固化”,而不是靠人管人。这个案例把 “开发 - 运维 - 测试” 的协作绑定到 K8S 1.33 的 CI/CD 流水线里,通过强制评审、强制单元测试覆盖率、自动化部署测试,减少了沟通和返工成本,最终实现研发效率提 2 倍。先定清晰的角色和规则,避免职责不清;选对工具栈(适配 K8S 1.33),把规则写成代码 / 配置;搭建自动化流水线,让系统代替人工执行规则;持续监控和优化,根据团队反馈迭代流程。

2025-12-25 18:09:34 614

原创 Golang/Python 开发 DevOps 工具集(集群巡检平台、日志分析脚本、批量操作工具),继成多个工具,减少人工工作量 90%

DevOps 工具集的核心就是 “把运维手工活写成代码”,先抽象通用逻辑(连接、采集、判断、输出),再针对具体场景(巡检 / 日志 / 批量)填充细节。这个案例覆盖了 K8S 1.33 的核心巡检场景,代码可直接复用,你可以基于这个框架扩展成自己的工具集(比如批量操作工具:改一行代码,把 “生成报告” 换成 “批量重启 Pod” 即可)。

2025-12-25 17:15:37 604

原创 IaC 实战:Terraform+Ansible 模块化搭建 K8s 1.33(环境一致 + 效率提升 95%)

description = "阿里云AccessKey"description = "阿里云SecretKey"description = "阿里云地域"description = "环境(dev/test/prod)"description = "master节点数"description = "node节点数"description = "master实例规格"description = "node实例规格"

2025-12-24 02:53:48 852

原创 GitOps 全流程落地:ArgoCD+GitLab CI(K8s 1.33 兼容)

核心就是 “AI 提前算,HPA 执行,闲时保底缩,峰值提前扩”。对你来说,落地的关键是:先搭指标采集→用简单的 ARIMA 模型跑通预测→动态更新 HPA→加监控闭环,先小范围试点(比如一个核心服务),验证成本和稳定性后再全量推广。整个流程兼容 K8s 1.33,都是原生组件 + 简单脚本,没有黑科技,易落地易维护。

2025-12-24 02:02:15 901

原创 运维赋能:DeepSeek R1 微调 AI 运维助手实战(K8s 1.33 兼容)

核心:AI 运维助手的关键是 “知识库准 + 微调数据贴合实际 + 权限控制严”,DeepSeek R1 只是底座,企业自己的运维数据才是灵魂;落地优先级:先做 “只读操作”(日志查询、故障指引),再做 “写操作”(脚本生成、自动执行),最后做 “智能决策”(故障自动修复);K8s 1.33 兼容:重点在知识库和微调数据中融入 1.33 新特性(kubectl debug、HPA behavior、CRI v1),避免模型输出过时命令;

2025-12-19 17:10:15 700

原创 智能调度:AI 预测 + K8s HPA 融合实战详解(K8s 1.33 兼容)

核心:AI 预测是 “提前预判”,HPA 是 “执行工具”,两者融合的关键是 “指标准、模型稳、执行有兜底”;落地优先级:先搞核心服务,用轻量模型(Prophet/ARIMA),别上来就搞深度学习,运维要的是 “能用、能调、能兜底”;K8s 1.33 兼容:重点用 autoscaling/v2 的 HPA,利用 behavior 字段控制扩缩容行为,权限控制用 ServiceAccount+RBAC;

2025-12-19 17:00:30 932

原创 故障根因定位:EFK+Pinpoint+NLP + 决策树(K8S1.33 兼容版)

核心逻辑是 “用 EFK/Pinpoint 收全故障数据,用 NLP 把非结构化数据转成可计算的特征,用决策树把特征映射到根因”—— 全程适配 K8S1.33,决策树的可解释性是运维落地的关键(比黑盒模型更易调优)。

2025-12-18 23:37:35 705

原创 Prometheus + LSTM 实现 K8S 资源瓶颈提前 12 小时预警(K8S1.33 兼容版)

"""构建LSTM模型input_shape: (输入序列长度, 特征数) → (1440, 2)"""# 第一层LSTM,返回序列model.add(Dropout(0.2)) # 防止过拟合# 第二层LSTM# 全连接层# 输出层(二分类:0=正常,1=瓶颈)# 编译模型(Adam优化器,二分类交叉熵损失)# 为每个pod训练模型(可并行,提升效率)print(f"训练pod: {pod}")# 早停(防止过拟合,准确率不提升就停)

2025-12-18 22:42:14 688

原创 等保 2.0 三级 + K8S 1.33 容器 100% 安全合规落地指南

等保 2.0 三级核心避坑:别只做 “配置合规”,忽略 “流程合规”(如漏洞整改记录、审计日志复核记录);K8S 1.33 兼容:ValidatingAdmissionPolicy 已稳定,别用废弃的 PodSecurityPolicy;网络隔离:Calico 的 NetworkPolicy 优先级高于 Flannel,等保场景优先用 Calico;日志留存:别只存在本地,一定要归档到对象存储(MinIO/S3),满足 “不可篡改” 要求;镜像扫描。

2025-12-17 17:52:48 1054

原创 K8S 1.33 安全合规三板斧:RBAC+NetworkPolicy+PodSecurityContext 详解

Role 是 “命名空间级” 的,集群级用 ClusterRole(比如允许跨命名空间操作)。# order-role.yaml(命名空间级Role)kind: Rolemetadata:namespace: order-ns # 仅在该命名空间生效rules:- apiGroups: [""] # 核心API组(Pod/Service等)resources: ["pods"] # 允许操作的资源verbs: ["get", "list"] # 允许的动作(只查不改)

2025-12-17 17:42:07 1002

原创 Helm 自定义 Chart 开发与版本管控(适配 K8s 1.33)

安装Helm 3.14+(Linux示例)# 验证版本helm version # 输出v3.14.x即可# 验证K8s集群(1.33)kubectl version --short # 确保Server Version是v1.33.xChart 开发核心:模板 + 配置分离,适配 K8s 1.33 的 API 版本(尤其是 Ingress);版本管控核心:Chart 版本(包迭代)+ Release 版本(部署迭代),通过仓库归档,支持升级 / 回滚;避坑点。

2025-12-15 14:45:54 526

原创 Harbor 镜像仓库核心技术详解(适配 K8S 1.33)

防漏洞→ 镜像有高危漏洞,K8S 不让用;防篡改→ 镜像没运维的 “防伪章”,K8S 不让用;降成本→ 不用的镜像挪到便宜存储,要用再拿回来。作为 10 年运维,你可以先在测试环境按上面的 Docker 部署步骤走一遍,重点验证 “扫描阻断”“签名阻断”“冷热迁移” 三个核心场景,再根据生产环境的合规、成本需求调整规则(比如漏洞等级、签名密钥管理、冷存周期),全程适配 K8S 1.33,核心是 “Harbor 定规则,K8S 做执行”,确保镜像全生命周期可控。

2025-12-13 13:38:42 588

原创 Calico 网络优化(BGP 路由调整、微分段隔离)

你肯定清楚 Calico 在 K8S 集群中的核心地位 —— 它靠 BGP 实现高效路由转发,靠网络策略实现精准隔离。下面结合 K8S1.33 版本,用通俗的语言拆解 BGP 路由调整、微分段隔离的技术逻辑、操作步骤,再附上一个贴近实际的优化案例,方便你直接对标落地。

2025-12-12 22:58:02 572

原创 Istio 1.16-1.25 服务网格落地指南:技术逻辑 + 实操步骤 + 实战案例

Istio 1.16-1.25 的核心价值就是把非业务的流量治理、熔断降级、安全加密能力,从服务代码中剥离,交给 Sidecar(Envoy)统一管控,实现 “业务无感、运维可控” 的治理闭环。下面我用 “技术逻辑(底层原理)+ 实操步骤(可落地)+ 完整案例(可复用)” 的方式拆解,全程 “说人话”,不堆砌专业术语,同时覆盖 1.16 到 1.25 的版本特性差异。Istio 1.16 开始就默认采用Istiod 单进程控制平面(替代老版本 Pilot、Citadel 等组件),1.25 进一步优化了性能

2025-12-10 20:16:40 530

原创 K8S调度优化实现案例

作为拥有 10 年 K8s 一线运维经验的专家,我以电商核心集群(K8s 1.33)调度优化为落地案例,从「环境准备→插件开发→全流程部署→效果验证」一步步拆解,所有配置和命令都适配 K8s 1.33 版本,全程用 “人话 + 实操” 的方式讲清楚,让你既能理解逻辑,又能跟着操作。先创建 3 个优先级类,让 K8s 识别业务重要性(K8s 1.33 对 PriorityClass 无兼容性变更,直接用):执行部署:给业务 Pod 绑定优先级(比如支付 Pod):(2)定义节点健康度规则

2025-12-10 17:55:39 1024

原创 K8S调度优化,帮K8S找一个聪明的调度员

调度优化:基于 K8s 调度器扩展点(Scheduler Extender)开发调度插件,实现 “业务优先级 + 节点健康度” 多维调度策略,解决资源亲和性冲突,调度延迟从 300ms 优化至 150ms,资源利用率从 45% 提升至 68%(大厂核心集群安全阈值)

2025-12-09 18:50:32 580

原创 etcd 三副本异地备份实现

etcd 三副本先保障。

2025-12-09 18:18:43 322

原创 龙蜥os8.9升级内核方法,兼容k8s1.33.0

uname -rreboot。

2025-10-09 17:41:05 176

原创 Rancher 2.8.4 管理k8s 1.25.0 集群

Rancher简介: rancher是管理K8S集群的web界面工具,提供web界面的操作,可以操作pod、deployment、daemonSet等增删改查的操作。命名空间Terminating的时候,就是删除不干净的时候,用豆包搜怎样彻底删除命名空间,删除干净后,再执行apply。回到rancher 看集群的界面,看到jiaming-test的主机是4台,说明导入成功。每个K8S集群的节点都要导入,也可以不导入,后门要慢慢pull。等十分钟,集群初始化后再添加,不然会出错的。

2025-09-18 17:21:00 750

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除