MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:支持多种医疗任务,包括医学影像处理、报告生成等。
  2. 技术:基于多模态大型语言模型(MLLM),集成多种医疗工具。
  3. 性能:在多个医疗任务上优于现有开源方法,甚至超过闭源模型 GPT-4o。

正文(附运行示例)

MMedAgent 是什么

公众号: 蚝油菜花 - MMedAgent

MMedAgent 是专为医疗领域设计的多模态AI智能体,通过整合各种开源医疗模型来管理多种医疗任务。系统包括一个指令调整的多模态大型语言模型(MLLM),作为行动规划器和结果聚合器,以及一套为代理量身定制的医疗工具集合,每个工具都针对医疗领域的特定任务。

MMedAgent 能处理包括 MRI、CT、X 射线等多种医学成像模式,支持临床实践中遇到的多种数据类型。通过理解用户指令和医学影像,生成格式化指令调用特定工具,聚合工具的输出以准确、全面地回复用户。MMedAgent 在多个医疗任务上的性能优于现有的开源方法,甚至超过了闭源模型 GPT-4o。

MMedAgent 的主要功能

  • 多模态任务处理:支持接地、分割、分类、医学报告生成(MRG)和检索增强生成(RAG)等多种语言和多模态任务。
  • 医疗影像支持:支持 MRI、CT 和 X 射线等多种医学成像模式,适应临床实践中遇到的各种数据类型。
  • 工具集成与调用:集成了多个工具,涵盖七个代表性的医疗任务,能根据用户指令选择合适的工具进行调用。
  • 指令微调:通过创建指令调整数据集,训练多模态大型语言模型(MLLM)作为动作规划器,理解和执行用户指令。
  • 结果聚合:MLLM 作为结果聚合器,将工具的输出与用户的指令和图像结合,生成最终答案。
  • 端到端训练:通过自回归目标对生成的序列进行端到端训练,确保模型能使用正确的工具并根据工具结果回答问题。

MMedAgent 的技术原理

  • 系统架构:由两个主要部分组成:一个指令调整的多模态大型语言模型(MLLM),作为行动规划器和结果聚合器;以及为代理量身定制的医疗工具集合,每个工具都针对医疗领域的特定任务。
  • 工作流程:包括四个步骤:用户提供指令和医疗图像;MLLM 理解指令和图像,生成格式化指令以调用特定工具;执行工具并返回结果;MLLM 将工具的输出与用户指令和图像结合,生成最终答案。
  • 指令微调:采用统一的对话格式来确保其作为行动规划器和结果聚合器的角色。在接收到用户输入后,MMedAgent 生成三个部分:Tho
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值