DeepSeek V3:DeepSeek 开源的最新多模态 AI 模型,编程能力超越Claude,生成速度提升至 60 TPS

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

原文链接:https://mp.weixin.qq.com/s/PH7FX3-m1SKVT-XDTzAh5g


🚀 快速阅读

  1. 功能:DeepSeek V3 具备自然语言处理、代码生成和多语言编程能力。
  2. 技术:采用混合专家架构,支持高效的多模态数据处理和长文本处理。
  3. 性能:在多个基准测试中表现优异,尤其在代码和数学领域。

正文(附运行示例)

DeepSeek V3 是什么

公众号: 蚝油菜花 - DeepSeek-V3

DeepSeek V3 是深度求索公司开源的最新版 AI 模型,采用混合专家(MoE)架构,包含 256 个专家,每次选取前 8 个专家参与计算。该模型在多语言编程能力上表现突出,超越了 Claude 3.5 Sonnet V2 等竞争对手。

公众号: 蚝油菜花 - DeepSeek-V3

DeepSeek V3 的生成速度从 20 TPS 提升至 60 TPS,处理多模态数据和长文本时表现优异。该模型已在 Hugging Face 上开源,方便开发者使用和集成。

DeepSeek V3 的主要功能

  • 自然语言查询处理:能理解和处理用户的自然语言查询,提供快速准确的回答。
  • 代码生成能力:帮助开发者快速生成代码片段,提高开发效率。
  • 多语言处理能力:在多语言编程测评中表现优异,超越多个竞争对手。
  • API和Web服务:提供API和Web服务,方便用户在不同场景下集成和使用。

DeepSeek V3 的技术原理

  • 架构设计:采用混合专家(MoE)架构,包含 256 个专家,通过 sigmoid 路由方式动态选择前 8 个专家参与计算。
  • 工作机制:分为计划、搜索、提取和丰富四个阶段,结合关键词搜索与神经搜索,精准定位和提取信息。
  • 多模态能力:使用 OCRvl2 技术,能更好地保留图片中的文字、格式排版和公式。

如何运行 DeepSeek V3

DeepSeek V3 已在 Hugging Face 上开源,开发者可以通过以下步骤快速集成和使用:

from transformers import AutoModelForCausalLM, AutoTokenizer

# 加载模型和分词器
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-V3")
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-V3")

# 输入文本
input_text = "生成一段Python代码,实现一个简单的计算器。"

# 生成代码
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)

# 输出结果
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

### 如何在微信中使用DeepSeek API 为了在微信环境中成功集成并利用DeepSeek API的功能,开发者可以遵循一系列特定的技术实现路径。首先,在微信公众平台创建一个服务号或订阅号,并获取相应的AppID和AppSecret[^2]。 接着,通过这些凭证来获得访问令牌(access token),这是调用微信接口所必需的身份验证参数。对于想要嵌入智能对话补全等功能的应用来说,这一步骤至关重要。 一旦获得了有效的访问令牌,就可以着手准备发送HTTP请求给DeepSeek API服务器了。通常情况下,会采用POST方式提交数据到指定端点URL上。以下是Python代码片段展示了如何构建这样的请求: ```python import requests import json def call_deepseek_api(message, access_token): url = "https://api.deepseek.com/v1/chat/completions" headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {access_token}' } payload = { "messages": [ {"role": "user", "content": message} ] } response = requests.post(url, data=json.dumps(payload), headers=headers) return response.json() ``` 此函数接收用户消息作为输入参数之一,并将其封装成符合OpenAI API格式的消息体结构;同时携带已取得的`access_token`用于身份认证目的。最终返回来自DeepSeek API的结果对象供后续处理使用。 值得注意的是,在实际部署过程中还需要考虑安全性措施以及错误处理机制等问题,确保整个系统的稳定性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值