新千题计划 3#:[NOI18] 归程

归程【难度:NOIP D2T1】魔力之都是一个无向连通图,每条边有一个海拔。今有若干天欲从某点回到 1 号点,每天海拔低于某值之边会有积水。每天都可从源点开车,车不能经过积水,且第二天会自动清除前一天之车。输出每天需要步行的最小路程。强制在线。

生成树。此题是翎驰学 OI 以来见过最暖心的题 qwq

关于 Kruskal 重构树可参考 OIWiki:最小生成树 - 涉 - 洛谷博客 一文结尾。此题先计算所有点到 1 号点的最短路,此后以海拔代替长度并且取反计算 Kruskal 重构树,根据 Kruskal 重构树的堆性,子树之海拔均大于根之海拔,则容易倍增找到行车区域之根节点。在 Kruskal 重构树同时更新“子树内最短路的最小值”,即可通过行车区域之根节点查询答案。

#include <cstdio>
#include <cstring>
#include <utility>
#include <algorithm>
#include <functional>
#include <queue>
#include <vector>
#define Apd push_back
#define Bnd std::make_pair
#define F(w, u, v) for(int w = u; w <= v; w++)
#define R(u) al[i].u

typedef std::pair<int, int> TWO;
const int MAXN = 200001, MAXM = 400001, ZONG = 600001, ML = 20;
struct EDGE { int u, v, l, a; } al[MAXM];
int t, n, m, q, k, s, lj[ZONG], hb[ZONG], jy[ZONG][ML + 1];
bool vis[MAXN]; std::vector<TWO> g[MAXN];
long long int la; std::priority_queue<TWO> qu;

struct UFS {
 int pa[ZONG];
 int f(int k) { return k == pa[k]? k: pa[k] = f(pa[k]); }
 inline void u(int k1, int k2) { pa[f(k2)] = k1; }
} uf;

int main() {

 scanf("%d", &t); while(t--) {
  qu.push(Bnd(0, 1));
  memset(lj, 0x7f, sizeof lj); memset(vis, 0, sizeof vis);
  la = lj[1] = 0;

  scanf("%d%d", &n, &m);
  F(i, 1, m) { scanf("%d%d%d%d", &R(u), &R(v), &R(l), &R(a));
   g[R(u)].Apd(Bnd(R(v), R(l))); g[R(v)].Apd(Bnd(R(u), R(l))); }

  while(!qu.empty()) {
   int cur = qu.top().second; qu.pop();
   if(vis[cur]) continue; else vis[cur] = true;
   for(auto i: g[cur]) {
    if(lj[cur] + i.second < lj[i.first]) {
     lj[i.first] = lj[cur] + i.second;
     qu.push(Bnd(~lj[i.first], i.first)); }}}

  F(i, 1, n) { g[i].clear(); hb[i] = -1; }
  F(i, 1, n + m) uf.pa[i] = i;
  std::sort(al + 1, al + 1 + m,
    [](EDGE u, EDGE v) { return u.a > v.a; });
  F(i, n + 1, n + m) {
   int fu = uf.f(al[i - n].u), fv = uf.f(al[i - n].v);
   if(fu != fv) { hb[i] = al[i - n].a; uf.u(i, fu); uf.u(i, fv);
    lj[i] = std::min(lj[fu], lj[fv]); jy[fu][0] = jy[fv][0] = i; }}

  F(j, 1, ML) F(i, 1, n + m)
   jy[i][j] = jy[i][j - 1]? jy[jy[i][j - 1]][j - 1]: 0;

  scanf("%d%d%d", &q, &k, &s); while(q--) {
   int v, p; scanf("%d%d", &v, &p);
   v = (v + k * la - 1) % n + 1, p = (p + k * la) % (s + 1);
   for(int i = ML; ~i; i--)
    if(jy[v][i] && hb[jy[v][i]] > p) v = jy[v][i];
   printf("%lld\n", la = lj[v]); }}}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 子序列是指从一个序列中取出任意数量的元素,而不改变它们在原序列中的相对顺序所得到的新序列。换句话说,子序列是原序列的一个部分,可以是连续或非连续的。 对于给定的一个序列,请你求出它的子序列的个数。 解题思路: 我们可以使用动态规划的思想来解决这个问题。假设原序列的长度为n。首先,我们定义一个长度为n的数组dp,其中dp[i]表示以第i个元素结尾的子序列的个数。 初始化时,dp数组的所有元素都为1,因为每个元素本身也是一个子序列。 然后,我们从第二个元素开始遍历原序列。对于当前遍历到的元素,我们需要计算以它结尾的子序列的个数。遍历到第i个元素时,我们需要向前遍历前面的元素,若前面的某个元素小于第i个元素,则第i个元素可以接在这个元素的后面,形成一个新的子序列。此时,我们可以利用dp数组来直接求出以前面的这个元素结尾的子序列的个数,并将它们累加到dp[i]中。 最后,我们将dp数组中所有元素的值相加,即可得到原序列的子序列的个数。 例如,对于序列1 2 3 4,其子序列的个数为15,具体的子序列是(1)、(2)、(3)、(4)、(1 2)、(1 3)、(1 4)、(2 3)、(2 4)、(3 4)、(1 2 3)、(1 2 4)、(1 3 4)、(2 3 4)、(1 2 3 4)。 这就是使用动态规划求解子序列个数的方法。 希望对你有帮助! ### 回答2: 子序列是指从给定序列中删除若干个元素后所得到的序列,而被删除的元素的顺序保持不变。例如,对于序列[1, 2, 3, 4, 5],它的子序列可以为[1, 2, 3]、[2, 4, 5]等。那么现在我们来解答关于子序列的NOI教师培训试题。 试题:给定一个长度为n的正整数序列a,若存在一个长度为m的序列b(b中元素值可以不连续)是a的子序列,并且b满足b中各个元素之和可以整除k,输出序列b的最大长度m。 解答: 首先,我们可以使用动态规划的思想来解决这个问题。定义一个dp数组,dp[i]表示以第i个元素结尾的子序列的最大长度。初始化dp数组的所有元素为1。 然后,我们遍历序列a,对于每个元素a[i],再遍历它之前的元素a[j](0 <= j < i),如果a[i]可以整除k,说明可以将a[j]添加到以a[i]结尾的子序列中,此时更新dp[i] = max(dp[i], dp[j] + 1)。最后,找出dp数组中的最大值,即为题目所求的结果。 例如,对于序列a = [1, 2, 3, 4, 5],k = 3,执行上述算法得到dp数组为[1, 1, 1, 1, 2],最大值为2,因此输出结果为2。 该算法的时间复杂度为O(n^2),在n较小的情况下可以接受。如果希望进一步优化时间复杂度,可以考虑使用动态规划+哈希表的方法,将时间复杂度降低到O(n)。 以上就是关于NOI教师培训试题子序列的解答,希望能对您有所帮助! ### 回答3: 子序列是指从一个给定的序列中选择出若干个元素,这些元素在原序列中保持相对顺序不变,但不一定连续。例如,对于序列1 2 4 3,它的子序列可以是1 4、2 3、1 2 3、4等。 求一个序列的最长递增子序列是一个经典问题。给定一个整数序列,我们要找出一个最长的递增子序列,其中递增表示:对于任意的i和j,如果i < j,则ai < aj。例如,对于序列2 1 4 3,它的最长递增子序列是1 3,长度为2。 解决这个问题的动态规划算法可以描述如下: 1. 创建一个辅助数组dp,dp[i]表示以第i个元素结尾的最长递增子序列的长度。 2. 初始化dp数组,将dp的所有元素都初始化为1,表示每个元素本身就是一个递增子序列,长度为1。 3. 从第2个元素开始遍历原序列,依次计算每个元素结尾的最长递增子序列的长度。 4. 对于每个元素,从它之前的元素中找到比它小的元素,如果找到,就更新dp[i]为dp[j]+1,表示以当前元素结尾的最长递增子序列长度增加1。 5. 遍历完整个序列后,dp数组中的最大值即为原序列的最长递增子序列的长度。 上述算法的时间复杂度是O(n^2),其中n是序列的长度。还有其他更优化的算法,可以将时间复杂度降到O(nlogn),例如使用二分查找或贪心算法。 对于NOI教师培训试题,子序列问题是一个较为常见的题型,可以使用上述动态规划算法进行求解。在解题过程中,需要注意理解子序列的含义,以及动态规划算法的思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值