[算法题]滑动窗口最大值

本文介绍了一种高效算法,利用双端队列解决给定数组和滑动窗口大小问题,找到每个滑动窗口内的最大值。通过队列维护窗口内的最大值,避免了暴力遍历,时间复杂度降低。详细步骤和代码示例展示了如何用队列技巧简化问题求解。
摘要由CSDN通过智能技术生成

题目

给定一个数组和滑动窗口的大小,请找出所有滑动窗口里的最大值。

例如,如果输入数组[2, 3, 4, 2, 6, 2, 5, 1]及滑动窗口的大小3,那么一共存在6个滑动窗口,它们的最大值分别为[4, 4, 6, 6, 6, 5]。

题解

  • 方法一 暴力做法,遍历每一个窗口 时间复杂度 O(kn) 省略
  • 方法二 使用双端队列的方法
    当我们遍历数组时,比如 [2, 3, 4, 2, 6, 2, 5, 1] 中,遍历到 6 的时候
    此时滑动窗口的范围是 [4, 2, 6]
    但是 6 前面的 42 都比 6
    而且 42 要在 6 的前面,所以后面的滑动窗口中不会再有这个位置的 42
    —————————
    所以我们可以使用一个双端队列来维护滑动窗口的最大值
    这个队列存储的是原数组的下标
    这个队列从队头到队尾 下标的值递增,下标对应数组里的值递减(后面会解释)
    —————————
    遍历数组,当遍历到 i 时:
    步骤1 如果队头的下标值到达当前 i 的距离大于 k 则这个队头对应的下标已经不在滑动窗口中了,应当剔除
    步骤2 循环判断 如果队列中队尾的下标对应的值小于 nums[i] 则表明后面的滑动窗口中这个下标对应的值已经不可能再作为最大值出现了,应当删除。
    例如
    遍历到 6 的时候,队列中下标对应的值为 4,2
    2 小于 6,删除2,队列变为 4
    4 小于 6,删除4,队列变为空
    步骤3nums[i] 的下标 i 插入队列尾部
    ————————
    解释为什么“队列从队头到队尾 下标的值递增,下标对应数组里的值递减”
    因为每次往队列中插入数据的时候,都要从队尾开始,把所有下标对应值小于插入值的都删掉,然后再插入新值在数组中的位置。
    ·因为每次新值都插在队尾,所以队头到队尾存的下标值是递增的
    ·因为每次新值插入队尾的时候,比新值大的数都已经删掉,所以每次插入的时候,新值都是队列中最小的,所以队列中存储的下标对应的值递减
    ·所以队首存的值永远都是滑动窗口中最大值所对应的下标

代码

vector<int> maxInWindows(vector<int>& nums, int k) {
    vector<int> res;
    deque<int> q;
    
    for(int i = 0; i < nums.size(); i++){
        
        if(!q.empty() && i >= q.front() + k) q.pop_front();
        
        while(!q.empty() && nums[q.back()] < nums[i]) q.pop_back();
        
        q.push_back(i);
        if(i >= k - 1) res.push_back(nums[q.front()]);
        
    }
    return res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值