B: 牛牛战队的比赛地(二分做法)
题意:二维平面给定n个点,在x轴找一点使得到n个点距离的最大值最小。
思路:
我们可以将问题转化为在x轴找到一个圆心,使得该圆包含这n个点且半径最小,这样就变成了最小圆覆盖问题。有关于最大值最小此类问题,我们第一个想到的就应该是二分了,关键在于二分半径后如何check呢?
首先我们需要明白这样一个前提,也是解题的关键点:一个半径为R的圆,我们任意在圆上或圆内找一个点,也做半径为R的圆,那么这个圆一定会包含之前那个圆的圆心。
明白了这个,问题就easy了,我们将二分得到的半径R,把n个点都拿来做这样半径为R的圆,与x轴相交的部分,说明圆心可能落在这一范围内,然后我们只要看这些区域是否产生矛盾就好了。比如点1与x轴相交范围为[3,6],点2为[7,10],没有相交的部分,显然答案矛盾,即不存在半径为R的圆可以包含全部点。
#include <bits/stdc++.h>
#define x first
#define y second
#define d double
using namespace std;
const int N = 2e5 + 5;
int n;
pair<d, d> p[N];
bool check(d o)
{
d l, mi = -1e18, ma = 1e18;
for (int i = 1; i <= n; i++)
{
if (o < fabs(p[i].y))
return false;
l = sqrt(o - p[i].y) * sqrt(o + p[i].y); ///等价于sqrt(o*o-p[i].y*p[i].y)
mi = max(mi, p[i].x - l);
ma = min(ma, p[i].x + l);
}
return mi <= ma; ///判断最大的左端点<=最小的右端点即可
}
int main()
{
ios_base::sync_with_stdio(false);
cin >> n;
for (int i = 1; i <= n; i++)
cin >> p[i].x >> p[i].y;
d l = 0, r = 1e18, mid;
int t = 250;
while (t--)
{
mid = (l + r) / 2.0;
if (check(mid))
r = mid;
else
l = mid;
}
cout << fixed << setprecision(6) << r;
return 0;
}
D:牛牛与牛妹的约会 (贪心)
题解:我们先明确何时开根号走会更优,即:x - x^(1/3) > 1,解得x>2.3247179,因此我们贪心的按开根号走直到x<=2.3247179,同时维护最小值即可。
#include <bits/stdc++.h>
using namespace std;
double cal(double x)
{
double l = 0, r = x, mid;
int q = 50;
while (q--)
{
mid = (l + r) * 0.5;
if (mid * mid * mid >= x)
r = mid;
else
l = mid;
}
return r;
}
int main()
{
int t;
while (~scanf("%d", &t))
{
while (t--)
{
double a, b;
scanf("%lf%lf", &a, &b);
double now = 0, ans = fabs(a - b);
if (a >= 0)
{
while (a >= 2.3247179)
{
now += 1.0;
a = cal(a);
ans = min(ans, fabs(a - b) + now);
}
}
else if (a < 0)
{
a = -a;
b = -b;
while (a >= 2.3247179)
{
now += 1.0;
a = cal(a);
ans = min(ans, fabs(a - b) + now);
}
}
printf("%.9f\n", ans);
}
}
return 0;
}
E: Enjoy the game (博弈)
题解:多写几个就看出来了,是二次幂后手胜,否则先手胜。
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin >> n;
if (!(n & (n - 1))) ///判断是否为2次幂
cout << "Alice";
else
cout << "Bob";
return 0;
}
H:Hash (进制转化)
题解:
x%mod=p 不难得到 (x+mod)%mod=p
所以字符串加个mod就可以了,判一下长度是否还为6即可。
#include <bits/stdc++.h>
using namespace std;
char s[20], a[105];
int mod, k, x;
int main()
{
while (~scanf("%s%d", s, &mod))
{
memset(a, 0, sizeof(a));
k = x = 0;
for (int i = 0; i < 6; i++)
x = x * 26 + s[i] - 'a'; ///转为10进制
x += mod;
while (x) ///转回26进制
{
a[++k] = x % 26;
x /= 26;
}
if (k <= 6)
{
if (k < 6) ///长度不够6补a即可
k++;
for (int i = k; i >= 1; i--)
printf("%c", a[i] + 'a');
}
else
printf("-1");
puts("");
}
return 0;
}