4016: 辉夜的夜空明珠(moon)

本文探讨了一种复杂的图论问题,涉及无向图中特定颜色路径的最短汇合时间算法。通过设计Dist[i][j]矩阵来记录每四个步骤的颜色状态,使用Dijkstra算法找到多个起点的最短汇合路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

 

整个回廊可以看作一个n 个点m 条边的无向图,每条边走动花费的时间为1。辉夜、永琳、铃仙、因幡帝等k 个人或兔子可以通过传送阵分别进入这个图上的k 个特殊的点,然后去寻找闯入者。但是在寻找闯入者之前,他们要聚集到一个点,以增强战斗力。注意,可以先到的人停下不走等后来的人。

闯入者不知道回廊的规则,因此被困住,对辉夜等k 个人的行动没有影响。而辉夜等k个人必须按照回廊的规则走动。

回廊的规则如下:每个点有一个颜色,一共4 种颜色,红、蓝、黄、绿,分别以R、B、Y、G 表示。走动时必须在第4p+1 步到4p+4 步的时候走四种不同的颜色,当然最后一个不完整的周期内也不能走动相同颜色。注意,起点算第1 步。

现在给定k 个起点,辉夜想知道他们最短多长时间能够汇合,若不能汇合输出-1。

 

输入

 

第一行一个Case,表示测试点编号。

第二行两个数n 和m,表示图有n 个点m 条边。

第三行一个k,表示有k 个人。

第四行k 个数,表示k 个入口的编号。

第五行一个长度为n 的字符串,仅包含RBYG,表示n 个点的颜色。

下面 m 行每行两个数,ui,vi,表示第 i 条边连接了ui和vi。

 

输出

 

一个数表示最短汇合时间,不能汇合输出-1。

 

样例输入

<span style="color:#333333"><span style="color:#333333">1
5 4
4
1 2 3 4
RRRRG
1 5
2 5
3 5
4 5</span></span>

样例输出

<span style="color:#333333"><span style="color:#333333">1</span></span>

提示

 

数据范围

对于100%的数据,保证k>=2。

测试点编号

n

m

k

1

≤8≤8

≤16≤16

≤5≤5

2

≤30000≤30000

=n−1=n−1

≤5≤5

3

4

≤30000≤30000

≤150000≤150000

≤5≤5

5

6

7

≤50000≤50000

≤200000≤200000

≤10≤10

8

9

10

 

来源

noip2018模拟-淮阴

题解:

由于我们只关心每四步走了哪几种颜色,所以我们可以设计Dist[i][j]表示走到i点,在这个四步之内每一种颜色的情况,然后用dijkstra跑一遍即可。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
int Case,n,m,k,a[15],co[50005],V[400005],nex[400005],las[50005],tot;
int Dist[15][50005][16],dist[505][50005],ans=1e9;
struct Node{int x,y;};
queue<Node>que;
char ch[50005];
void add(int t1,int t2)
{
    V[++tot]=t2;nex[tot]=las[t1];las[t1]=tot;
    V[++tot]=t1;nex[tot]=las[t2];las[t2]=tot;
}
int main()
{
    scanf("%d%d%d%d",&Case,&n,&m,&k);
    for(int i=1;i<=k;++i)scanf("%d",&a[i]); 
    scanf(" %s",ch+1);
    for(int i=1;i<=n;++i)
    {
        if(ch[i]=='R')co[i]=0;
        if(ch[i]=='B')co[i]=1;
        if(ch[i]=='Y')co[i]=2;
        if(ch[i]=='G')co[i]=3;
    }
    for(int i=1,t1,t2;i<=m;++i)scanf("%d%d",&t1,&t2),add(t1,t2);
    for(int i=1;i<=k;++i)
    {
        for(int j=1;j<=n;++j)
            for(int t=0;t<16;++t)Dist[i][j][t]=1e9;
        Dist[i][a[i]][1<<co[a[i]]]=0;
        que.push((Node){a[i],1<<co[a[i]]});
        while(!que.empty())
        {
            Node t=que.front();que.pop();
            int h=las[t.x];
            while(h)
            {
                if((Dist[i][t.x][t.y]+1)%4==0)
                {
                    if(Dist[i][V[h]][1<<co[V[h]]]>Dist[i][t.x][t.y]+1)
                    {
                        Dist[i][V[h]][1<<co[V[h]]]=Dist[i][t.x][t.y]+1;
                        que.push((Node){V[h],1<<co[V[h]]});
                    }
                    h=nex[h];continue;
                }
                if((1<<co[V[h]])&t.y){h=nex[h];continue;}
                if(Dist[i][V[h]][t.y|(1<<co[V[h]])]>Dist[i][t.x][t.y]+1)
                {
                    Dist[i][V[h]][t.y|(1<<co[V[h]])]=Dist[i][t.x][t.y]+1;
                    que.push((Node){V[h],t.y|(1<<co[V[h]])});
                }
                h=nex[h];
            }
        }
    }
    for(int i=1;i<=k;++i)
        for(int j=1;j<=n;++j)
        {
            dist[i][j]=1e9;
            for(int t=0;t<16;++t)dist[i][j]=min(dist[i][j],Dist[i][j][t]);
        }
    for(int i=1;i<=n;++i)
    {
        int ls=-1;
        for(int j=1;j<=k;++j)ls=max(ls,dist[j][i]);
        ans=min(ans,ls);
    }
    if(ans!=1e9)cout<<ans;
    else cout<<-1;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值