sgu103:Traffic Lights

很明显是个最短路的模型,考虑用spfa.
由从一个点到另一个点的时间为l(u,v)+wait(u,v),wait(u,v)为等待时间;
因为从一个点到另一个点,早走总比晚走好,所以直接在spfa的不等式中加上wait(u,v)即可;

wait的计算方法参见:http://www.cnblogs.com/Rinyo/archive/2012/11/29/2795030.html

代码如下(C++初学者...代码可能有点丑...):

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

const int MAXN = 305, MAXM = 14005, INF = 1e8;

int N, M, st, en;
struct city
{
  int initial, i_last; // initial color and last time;
  int last[2];	
}v[MAXN];

vector<int> e[MAXN], l[MAXN];
int dis[MAXN] = {0};

void calc(int time, int k, int& ck, int& nk)
{
  if(time < v[k].i_last) 
  {
    ck = v[k].initial;
    nk = v[k].i_last;
  }
  else
  {
    int tmp = (time - v[k].i_last) % (v[k].last[0] + v[k].last[1]);
	int base = time - tmp;
	if(v[k].initial == 0)
	{
	  if(tmp < v[k].last[1]) {ck = 1; nk = v[k].last[1] + base;}
	  else {ck = 0; nk = v[k].last[0] + v[k].last[1] + base;}	
	}
	else 
	{
      if(tmp < v[k].last[0]) {ck = 0; nk = v[k].last[0] + base;}
      else {ck = 1; nk = v[k].last[0] + v[k].last[1] + base;}
	}
  }
}

int wait(int time, int x, int y, int f)
{
  int curx, cury, nextx, nexty;
  calc(time, x, curx, nextx); calc(time, y, cury, nexty); 
  if(curx == cury) return time;
  if(nextx == nexty)
  {
    if(f == 0) return wait(nextx, x, y, 1);
	else if(time <= v[x].i_last || time <= v[y].i_last) return wait(nextx, x, y, 1);
	else return INF; 	
  }
  return min(nextx, nexty);
}

int father[MAXN] = {0};
void print(int r)
{
  if(r > 0) 
  {
    print(father[r]);
    cout << r << ' ';	
  }
} 

void SPFA()
{
  int ll = -1, r = 0;
  int queue[MAXM] = {0};
  bool vis[MAXN] = {0};
  for(int i = 1; i <= N; ++i) dis[i] = INF;
  dis[st] = 0;
  vis[st] = true;
  queue[0] = st;
  while(ll < r)
  {
  	ll++;
	int cur = queue[ll];
	vis[cur] = false;
	for(int i = 0; i < e[cur].size(); ++i)
  	{
  	  int wait_time = wait(dis[cur], cur, e[cur][i], 0);
	  if(dis[e[cur][i]] > l[cur][i] + wait_time)
	  {
	    dis[e[cur][i]] = l[cur][i] + wait_time;
		father[e[cur][i]] = cur;
		if(!vis[e[cur][i]]) 
		{
		  vis[e[cur][i]] = true;
		  queue[++r] = e[cur][i];	
		}
	  }
    }
  } 
  if(dis[en] == INF) 
  {
    cout << '0';
	return ;	
  }
  cout << dis[en] << '\n';
  print(en);
}


int main()
{
  cin >> st >> en >> N >> M;
  scanf("\n");
  for(int i = 1; i <= N; ++i)
  {
    char c;
    scanf("%c", &c);
	cin >> v[i].i_last >> v[i].last[0] >> v[i].last[1];
	scanf("\n");
	if(c == 'B') v[i].initial = 0;
	else v[i].initial = 1;
  }
  for(int i = 1; i <= M; ++i)
  {
    int x, y, ll;
	cin >> x >> y >> ll;
	e[x].push_back(y);
	l[x].push_back(ll);
	e[y].push_back(x);
	l[y].push_back(ll);
  }
  
  SPFA();
  
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值