题意:
你的任务是找到最小自然数 N, 使N!在十进制下包含 Q个零.
众所周知N! = 1*2*...*N. 例如, 5! = 120, 120 结尾包含1个零.
Input
一个数 Q (0<=Q<=10^8).
Output
如果无解,输出"No solution" , 否则输出 N
分析:
首先问题可以简化成求1到N有多少个5的因子。
然后我们暴力or数学分析可以得知最大解为400000015,为保险打个5^15的表。
很明显从1到(5^k)-1之间只有5,5^2,5^3......5^(k-1)的倍数。
因此我们可以有个功能函数求1到P之间有多少个5的因子,即为:sum=ΣP/5^k。
从1到400000015进行二分查找,如果有解,输出最小的,否则无解。
你的任务是找到最小自然数 N, 使N!在十进制下包含 Q个零.
众所周知N! = 1*2*...*N. 例如, 5! = 120, 120 结尾包含1个零.
Input
一个数 Q (0<=Q<=10^8).
Output
如果无解,输出"No solution" , 否则输出 N
分析:
首先问题可以简化成求1到N有多少个5的因子。
然后我们暴力or数学分析可以得知最大解为400000015,为保险打个5^15的表。
很明显从1到(5^k)-1之间只有5,5^2,5^3......5^(k-1)的倍数。
因此我们可以有个功能函数求1到P之间有多少个5的因子,即为:sum=ΣP/5^k。
从1到400000015进行二分查找,如果有解,输出最小的,否则无解。
#include <cstdio>
using namespace std;
int f[16] = {1};
int calc(int k)
{
int re = 0;
for(int i = 1; i <= 15 && f[i] <= k; ++i)
re += k/f[i];
return re;
}
int main()
{
int Q = 0;
scanf("%d", &Q);
for(int i = 1; i <= 15; ++i)
f[i] = f[i-1]*5;
int l = 1, r = f[15];
while(l != r)
{
int mid = (l+r)>>1;
int tmp = calc(mid);
if(tmp >= Q) r = mid;
else l = mid+1;
}
if(calc(l) != Q) puts("No solution");
else printf("%d\n", l);
return 0;
}