题意:
求一个无源无汇的有上下界的最大流。分析:
把每条边的边容量重设为上界-下界,记录每个点的最小进入in和最小输出流out,重设一个s、t,将s、t连向每一个点,边容量分别为每个点的in和out,从s到t跑最大流即
可。如果s的每条边满流,则有解,否则无解。
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 209, INF = 1e9;
int n, m;
struct Edge
{
int v, ne;
int f, c, l;
}edge[MAXN*MAXN];
int edgehead[MAXN], p = 1;
int sum, in[MAXN], out[MAXN];
int dis[MAXN];
void add(int u, int v, int f, int l)
{
edge[p].v = v;edge[p].c = edge[p].f = f;edge[p].l = l;
edge[p].ne = edgehead[u];edgehead[u] = p++;
}
int adv(int k) {return ((k-1)^1)+1;}
bool bfs(int s, int t)
{
for(int i = 1; i <= n; ++i) dis[i] = INF;
dis[t] = 0;
queue<int> q;
q.push(t);
while(!q.empty())
{
int u = q.front();q.pop();
for(int i = edgehead[u]; i; i = edge[i].ne)
{
int v = edge[i].v, f = edge[adv(i)].f;
if(f && dis[v] > dis[u]+1)
{
dis[v] = dis[u]+1;
q.push(v);
}
}
}
return dis[s] != INF;
}
int dfs(int now, int t, int flow)
{
if(now == t || flow == 0) return flow;
int re = 0, tmp;
for(int i = edgehead[now]; i; i = edge[i].ne)
{
int to = edge[i].v;
if(dis[to] == dis[now]-1 && edge[i].f && (tmp = dfs(to, t, min(flow, edge[i].f))))
{
re += tmp;flow -= tmp;
edge[i].f -= tmp;edge[adv(i)].f += tmp;
if(flow == 0) break;
}
}
dis[now] = INF;
return re;
}
int dinic(int s, int t, int maxf)
{
int re = 0;
while(bfs(s, t))
re += dfs(s, t, maxf);
return re;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; ++i)
{
int a, b, c, d;
scanf("%d%d%d%d", &a, &b, &c, &d);
in[b] += c;out[a] += c;sum += c;
add(a, b, d-c, c);
add(b, a, 0, 0);
}
for(int i = 1; i <= n; ++i)
{
if(in[i]) add(n+1, i, in[i], 0), add(i, n+1, 0, 0);
if(out[i]) add(i, n+2, out[i], 0), add(n+2, i, 0, 0);
}
n += 2;
if(dinic(n-1, n, INF) != sum)
{
puts("NO");
goto end;
}
puts("YES");
for(int i = 1; i <= m; ++i)
printf("%d\n", edge[2*i-1].c-edge[2*i-1].f+edge[2*i-1].l);
end:;
return 0;
}