题意:
有一个N*M的棋盘,棋盘每个格子要么是黑要么是白,每个2*2的方块颜色不能都相同,求总的颜色种数mod P。
1<=N<=10^100, 1<=M<=5, 1<=P<=10000。
分析:
1<=M<=5很明显的状压dp,但是1<=N<=10^100是我们不能一行行dp,还得用矩阵乘法优化。
对于矩阵G,G[i][j]==1表示j状态可以转移到i状态,我们dfs出矩阵G,然后G^(n-1),接着就是水了。
#include <cstdio>
#define get(s, i) ((s>>(i-1))&1)
using namespace std;
const int MAXL = 109, MAXS = 1<<5;
struct bi
{
short a[MAXL];
int l;
void read()
{
char c = getchar();
if(c >= '0' && c <= '9') read();
else return ;
a[++l] = c-'0';
}
void minus(int k)
{
if(a[1] >= k) a[1] -= k;
else
{
a[1] += 10-k;
a[2]--;
int i = 2;
while(a[i] < 0)
{
a[i] += 10;
a[++i]--;
}
for(int i = l; i >= 1; --i)
if(a[i] != 0) {l = i;break;}
}
}
bool empty()
{
if(l == 1 && a[1] == 0) return true;
else return false;
}
void binary()
{
if(a[1]&1) a[1]--;
for(int i = l; i >= 1; --i)
{
if(a[i]&1) a[i-1] += 10;
a[i] >>= 1;
}
for(int i = l; i >= 1; --i)
if(a[i] != 0) {l = i;break;}
}
}n;
int m, mod;
struct mtx
{
short g[MAXS][MAXS];
int n, m;
}ini, conse, f;
int ans;
mtx operator * (const mtx a, const mtx b)
{
mtx tmp = {{0}, 0, 0};
tmp.n = a.n, tmp.m = b.m;
for(int i = 0; i < a.n; ++i)
for(int k = 0; k < a.m; ++k)
for(int j = 0; j < b.m; ++j)
tmp.g[i][j] = (tmp.g[i][j]+a.g[i][k]*b.g[k][j]%mod)%mod;
return tmp;
}
void make(int ss, int s, int k)
{
if(k == m+1)
{
ini.g[ss][s] = 1;
return ;
}
if(k == 1)
{
make(ss, s, k+1);
make(ss+1, s, k+1);
}
else
{
int a = get(ss, k-1), b = get(s, k-1), c = get(s, k);
if(a == b && b == c)
make(ss+((a^1)<<(k-1)), s, k+1);
else
{
make(ss+(1<<(k-1)), s, k+1);
make(ss, s, k+1);
}
}
}
int main()
{
n.read();scanf("%d%d", &m, &mod);
ini.n = ini.m = 1<<m;f.n = 1<<m, f.m = 1;
for(int i = 0; i < (1<<m); ++i)
{
make(0, i, 1);
f.g[i][0] = 1;
}
n.minus(1);
conse.n = conse.m = 1<<m;
for(int i = 0; i < conse.n; ++i)
conse.g[i][i] = 1;
while(!n.empty())
{
if(n.a[1]&1) conse = conse*ini;
ini = ini*ini;
n.binary();
}
f = conse*f;
for(int i = 0; i < f.n; ++i)
ans = (ans+f.g[i][0])%mod;
printf("%d\n", ans);
return 0;
}