sgu197:Nice Patterns Strike Back(状压dp+矩阵乘法优化)

题意:

有一个N*M的棋盘,棋盘每个格子要么是黑要么是白,每个2*2的方块颜色不能都相同,求总的颜色种数mod P。

1<=N<=10^100, 1<=M<=5, 1<=P<=10000。

分析:

1<=M<=5很明显的状压dp,但是1<=N<=10^100是我们不能一行行dp,还得用矩阵乘法优化。

对于矩阵G,G[i][j]==1表示j状态可以转移到i状态,我们dfs出矩阵G,然后G^(n-1),接着就是水了。

#include <cstdio>
#define get(s, i) ((s>>(i-1))&1)
using namespace std;
const int MAXL = 109, MAXS = 1<<5;
struct bi
{
	short a[MAXL];
	int l;	
	void read()
	{
		char c = getchar();
		if(c >= '0' && c <= '9') read();
		else return ;
		a[++l] = c-'0';	
	}
	void minus(int k)
	{
		if(a[1] >= k) a[1] -= k;
		else
		{
			a[1] += 10-k;
			a[2]--;
			int i = 2;
			while(a[i] < 0)
			{
				a[i] += 10;
				a[++i]--;	
			}
			for(int i = l; i >= 1; --i)
				if(a[i] != 0) {l = i;break;}
		}
	}
	bool empty()
	{
		if(l == 1 && a[1] == 0) return true;
		else return false;	
	}
	void binary()
	{
		if(a[1]&1) a[1]--;
		for(int i = l; i >= 1; --i)	
		{
			if(a[i]&1) a[i-1] += 10;
			a[i] >>= 1;
		}
		for(int i = l; i >= 1; --i)
			if(a[i] != 0) {l = i;break;}
	}
}n;
int m, mod;
struct mtx
{
	short g[MAXS][MAXS];
	int n, m;
}ini, conse, f;
int ans;

mtx operator * (const mtx a, const mtx b)
{
	mtx tmp = {{0}, 0, 0};
	tmp.n = a.n, tmp.m = b.m;
	for(int i = 0; i < a.n; ++i)
		for(int k = 0; k < a.m; ++k)
			for(int j = 0; j < b.m; ++j)
				tmp.g[i][j] = (tmp.g[i][j]+a.g[i][k]*b.g[k][j]%mod)%mod;	
	return tmp;
}

void make(int ss, int s, int k)
{
	if(k == m+1) 
	{
		ini.g[ss][s] = 1;	
		return ;
	}
	if(k == 1) 
	{
		make(ss, s, k+1);
		make(ss+1, s, k+1);
	}
	else 
	{
		int a = get(ss, k-1), b = get(s, k-1), c = get(s, k);
		if(a == b && b == c)
			make(ss+((a^1)<<(k-1)), s, k+1);
		else
		{
			make(ss+(1<<(k-1)), s, k+1);	
			make(ss, s, k+1);
		}
	}
}

int main()
{
	n.read();scanf("%d%d", &m, &mod);
	ini.n = ini.m = 1<<m;f.n = 1<<m, f.m = 1;
	for(int i = 0; i < (1<<m); ++i) 
	{
		make(0, i, 1);
		f.g[i][0] = 1;	
	}
	n.minus(1);
	
	conse.n = conse.m = 1<<m;
	for(int i = 0; i < conse.n; ++i)
		conse.g[i][i] = 1;
	while(!n.empty())
	{
		if(n.a[1]&1) conse = conse*ini;
		ini = ini*ini;
		n.binary(); 	
	}
	f = conse*f;
	for(int i = 0; i < f.n; ++i)
		ans = (ans+f.g[i][0])%mod;
	printf("%d\n", ans);
	return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值