bzoj4001 tjoi2015 概率论 卡特兰数

来大概推理一下卡特兰数的通项公式的证明(折线法不难,这里只写下生成函数版本)

这里首先就是求i个点随机有根二叉树的个数,设为 f i f_i fi
其实这个就是卡特兰数
我们可以枚举一个儿子的大小
那么就会有 f i = ∑ i = 0 i − 1 f i ∗ f n − i − 1 f_i = \sum_{i = 0} ^ {i - 1} f_i * f_{n - i - 1} fi=i=0i1fifni1
那么就会有 F ( x ) = F ( x ) F ( x ) x + 1 F(x) = F(x)F(x)x + 1 F(x)=F(x)F(x)x+1
会解出来
F ( x ) = 1 − 1 − 4 x 2 x F(x) = \frac{1 - \sqrt{1 - 4x}}{2x} F(x)=2x114x
其中为加号的那个根,在代入 x = 0 x = 0 x=0的时候发现要舍去
然后我们把这个展开
直接求麦劳克林级数
发现就是
F ( x ) = ∑ i = 0 ∞ ( 2 i i ) i + 1 x i F(x) = \sum_{i = 0} ^ {\infin} \frac{\binom{2i}{i}}{i + 1} x ^ i F(x)=i=0i+1(i2i)xi
那么就求出来了通项公式
但是这题是叶子节点数量
我们同样可以考虑递推公式,设这个结果为 g i g_i gi
那么有
g i = 2 ∑ j = 0 i − 1 g i ∗ f n − i − 1 g_i = 2 \sum_{j = 0} ^ {i - 1} g_i * f_{n - i - 1} gi=2j=0i1gifni1
那么就有
G ( x ) = 2 G ( x ) F ( x ) x + x G(x) = 2 G(x) F(x) x + x G(x)=2G(x)F(x)x+x
代入 F ( x ) F(x) F(x)
可以解出
G ( x ) = x 1 − 4 x G(x) = \frac{x}{\sqrt{1 - 4x}} G(x)=14x x
同样大力求麦劳克林级数,有
G ( x ) = ∑ i = 0 ∞ ( 2 i − 2 i − 1 ) x i G(x) = \sum_{i = 0} ^ {\infin} \binom{2i - 2}{i - 1} x ^ i G(x)=i=0(i12i2)xi
然后直接拿系数比一下就得到
G ( x ) [ x n ] F ( x ) [ x n ] = n ( n + 1 ) 2 ( 2 n − 1 ) \frac{G(x)[x ^ n]}{F(x)[x ^ n]} = \frac{n(n + 1)}{2(2n - 1)} F(x)[xn]G(x)[xn]=2(2n1)n(n+1)

注意输出要直接保留9位小数,多保留会WA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值