dp[i][j]表示区间 i~区间 j 的最大value,区间长度为j - i + 1,转移方程即为:
dp[i][j] = max(dp[i + 1][j] + v[i] * (n - i - j),dp[i][j - 1] + v[j] * (n - i - j))
先更新短区间,则更新长区间时短区间已经被更新完毕,故dp[1][n]即为最终答案。
#include<iostream>
#include<vector>
#define debug(x) cout<<#x<<" is "<<x<<endl
#define pb push_back
using namespace std;
typedef long long ll;
ll ans;
const int N = 2e3 + 5;
int a[N];
ll dp[N][N];
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin>>n;
for(int i = 1;i <= n;i++){
cin>>a[i];
dp[i][i] = n * a[i];
}
for(int i = 1;i <= n - 1;i++){// i:length
for(int j = 1; j + i <= n;j++){//j : 开始下标
dp[j][j + i] = max(dp[j][j + i - 1] + (n - i) * a[j + i],dp[j + 1][j + i] + (n - i) * a[j]);
}
}
cout<<dp[1][n]<<endl;
return 0;
}