Python 音频技术
文章平均质量分 95
欢迎订阅~
可以访问我的主页,加入QQ讨论群。
我的Python全部自学笔记可以访问下面的链接进行查阅。
https://datayang.blog.csdn.net/article/details/128599278
Mr数据杨
知乎签约作者,搞Python大数据的日语文科生。
展开
-
librosa 实现分析音乐节拍
本教程详细介绍了如何使用librosa进行音乐节拍的分析和处理。从基本的节拍提取,到节拍同步与可视化,逐步深入到了高级应用场景。音乐节拍分析在很多实际项目中都有广泛的应用,例如音乐推荐、音频编辑、以及音乐可视化工具等。通过掌握librosa的这些功能,可以为音频处理项目提供强有力的支持。原创 2024-10-28 14:50:37 · 26 阅读 · 0 评论 -
基于CosyVoice的多语言语音合成技术解析
CosyVoice凭借其卓越的多语言支持和高效的音色克隆能力,成为了开源语音合成领域的领军者。无论是中、英、日、粤、韩多种语言的合成,还是跨语言的语音转换,CosyVoice都表现出了出色的合成质量。阿里通义实验室通过CosyVoice展示了国内AI语音合成技术的最高水准,使其成为科研与开发应用中不可或缺的工具。原创 2024-09-16 06:44:36 · 608 阅读 · 0 评论 -
基于GPT-SoVITS的API实现批量克隆声音
目标是将每一段声音通过GPT-SoVITS的API的API进行克隆,因为拼在一起的整个片段处理会造成内存或者缓存溢出。将目录下的音频文件生成到指定目录下,然后再进行拼接。通过AI工具箱生成的数据文件是这样的结构,目录下是没个片段生成的部分,是剪切无声片段的音频文件,这里克隆后会拼接生成一个。然后移动到指定的目录下。是正常拼接的音频文件,原创 2024-08-20 09:36:30 · 849 阅读 · 0 评论 -
基于GPT-SoVITS-Gradio的音频文本推理,流式生成,声音克隆
通过本文的详细步骤,您已经了解了如何使用UVR5进行音频预处理,如何利用GPT-SoVITS-TTS进行高效的语音训练和推理。音频处理和语音生成技术的结合,不仅提高了音频处理的效率,还极大地提升了生成语音的质量和自然度。希望本指南能够帮助您在实际应用中充分发挥这些工具的优势,创造出高质量的音频和语音合成作品。原创 2024-07-20 23:35:57 · 788 阅读 · 0 评论 -
基于FasterWhisper的音频转换文本
FasterWhisper以极高的识别速度和精确度,为音频转文本和实时语音处理提供了卓越的解决方案。通过轻量级的模型设计及支持GPU加速的特性,FasterWhisper不仅适用于自动生成字幕、会议记录、语音助手等应用,还能在资源受限的设备上实现平稳高效的运行。无论在初学者或是高级开发者手中,FasterWhisper都能够通过便捷的接口和灵活的模型选择,满足多样化的使用需求。音频转文本的应用领域广泛,而FasterWhisper无疑是实现这些应用的理想工具。原创 2024-04-10 11:27:36 · 358 阅读 · 0 评论 -
pydub 实现音频操作
通过本教程对 pydub 的学习,读者不仅掌握了音频文件的基本导入和导出操作,还深入理解了音频剪辑、拼接、音量调整、特效处理等核心技术。音频淡入淡出效果的加入、速度的调整、音频过滤及降噪等应用,使音频处理变得更加流畅自然且专业。特别是在自动化音频编辑和背景音乐生成等应用场景中,pydub 展现了卓越的灵活性与效率。无论是批量格式转换、音量标准化,还是生成定制的背景音乐,pydub 都为音频项目的高效管理提供了重要支持。相信读者能够将所学内容应用于实际项目,使音频处理在技术和表现力上更上一层楼。原创 2024-04-10 11:25:42 · 417 阅读 · 0 评论 -
基于So-VITS-SVC4.1的API实现批量克隆声音
完整的代码如下,这里对应的路径修改成自己的就行。导入必要的模块用于文件路径操作、发送HTTP请求、文件操作以及音频处理。定义了API的URL和表单数据,这些数据将用于处理音频文件,例如音频变调、采样率调整和指定说话人ID等。先看一下批量执行的结果,我这里是处理《红楼梦》文件夹下全部的内容,处理每个片段然后用。文件按文件名中的数字顺序合并为一个单独的文件,并将这个合并后的文件保存到指定路径。遍历《红楼梦》章节音频文件所在的目录,对每个子目录中符合特定条件的。,该函数负责将一个目录下所有的。原创 2024-04-07 21:25:49 · 279 阅读 · 0 评论 -
基于So-VITS-SVC4.1声音克隆几种不同的推理方法
通过本文的介绍,开发者应已掌握了在非WebUI环境中启动语音克隆模型的不同方法。命令行方式提供了直接的模型推理途径,适合快速测试和在无界面需求的场景下使用。API调用方式则通过Flask服务器提供更灵活的接口服务,使用户能够利用HTTP请求轻松实现音频转换功能。文章详细说明了不同参数的作用和配置方法,涵盖了模型推理、音频增强、设备控制等多个方面,为开发者在各类音频项目中的实际应用奠定了扎实的基础。这种集成性的指导不仅提升了语音克隆的易用性,还使模型在不同使用场景下具备了更高的扩展性和可操作性。原创 2024-04-05 21:38:19 · 1036 阅读 · 0 评论 -
基于So-VITS-SVC4.1声音克隆音频异常的解决办法
借助模型参数的优化设置与微软TTS服务的分段生成方法,语音克隆与文本转语音的自然度与质量得以显著提升。通过调整预测参数以及语调的设定,克服了生成音频中不自然的腔调问题,达到了更为自然流畅的效果。而基于分段生成音频的策略,使得长音频处理不再面临失真、质量下降等挑战,最终得到了高质量、连续的语音输出。利用本文中的代码示例与流程步骤,可以构建出高效的音频生成流程,适用于多种音频生成场景。原创 2023-06-27 08:50:24 · 3345 阅读 · 0 评论 -
基于MockingBird声音克隆
本篇博客从环境配置到项目应用,详细解析了MockingBird深度学习项目的搭建过程。通过逐步实现环境部署、数据预处理、模型训练,提供了可靠的项目落地参考。项目实践的每一步均进行了细致的讲解与调试指导,特别是在音频与字幕的提取、数据目录的设置、模型训练的过程中,为读者提供了清晰的实操路径。此外,还提供了项目GUI可视化操作的详细流程,使得项目的应用更加直观易用。整体而言,这篇文章不仅为深度学习项目搭建提供了翔实的操作说明,也为读者探索并解决项目中遇到的复杂问题提供了系统性的思路。原创 2023-02-08 11:29:15 · 4137 阅读 · 2 评论 -
基于So-VITS-SVC4.0声音克隆
通过详尽的指导和丰富的配置选项,本文为使用者提供了一套完整的深度学习项目实施方法。从环境配置到数据集预处理,再到训练与推理的优化,每一步都尽可能考虑了实际应用中的细节和常见问题。自动f0预测、音色聚类控制、F0均值滤波等推理优化手段,为模型在不同场景下的音频生成效果提供了更高的灵活性和准确度。此外,WebUI的可视化界面简化了操作流程,使得即使是复杂的模型训练和推理配置也能轻松掌控。无论是初学者还是有一定经验的开发者,本文均提供了高效且实用的指导,帮助读者快速上手并优化其深度学习项目。原创 2023-04-16 09:25:52 · 10283 阅读 · 0 评论