首先,抛出我数据治理工作上遇到的头号致命问题吧 - 组织架构
数据治理,本着治理业务数据问题,因从业务发起,数据拉通,数据治理团队跟进。但在目前所在数据质量项目组,是以独立于业务外的数据中心发起,搜集数据分析/开发人员遇到的数据问题,继而向业务寻求反馈。
管理层面,合理的组织架构应该是怎样的呢?
从下至上,从业务系统到数据系统,按照业务事业部依次地:业务人员、事业部研发人员、事业部数据人员、对接各事业部的工作小组、整体工作组、领导组
其次,就是数据治理工作流程了
目前团队没有规范的工作流程,遇到问题就一股脑扑上去沟通、跟进、推动,问题分散不集中、没有明确的业务对象、没有明确的范围、没有明确的管理模式,导致问题极难推动、问题极难明确原因、推动费力费时。
执行层面,合理的治理流程是怎样的呢?
- 业务架构梳理,界定范围
- 拉通业务场景
- 业务对象和业务元数据梳理(元数据管理)
- 数据标准和数据规范制定(数据标准与数据质量规则)
- 总体计划和方案制定(不同类型问题的解决方案)
- 执行落地(方案落地)
继而,便是线上系统化
针对前期人工积累的数据治理内容,在系统上实现配置、自动监测告警、执行计划推送,实现数据生命周期管控。
- 配置表字段的规则
- 生成质量监控任务
- 针对不同类型质量任务,推送解决策略