Keras
文章平均质量分 64
如雾如电
剑花,烟雨,江南
展开
-
(keras)Dense block和Residual block的使用
数据读入data.pyfrom __future__ import print_functionfrom keras.preprocessing.image import ImageDataGeneratorimport numpy as np import osimport cv2import globimport skimage.io as ioimport skimage.transform as transfrom skimage import img_as_ubyteSky原创 2021-01-17 13:07:40 · 2151 阅读 · 1 评论 -
TypeError: weighted_cross_entropy_with_logits_v2() got an unexpected keyword argument ‘targets‘
File ".\train.py", line 80, in train batch_size=args["batch_size"], epochs=args["epoch"], callbacks=callback_list, verbose=1) File "F:\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py", line 108, in _method_wrapper return me原创 2020-10-26 00:36:02 · 1258 阅读 · 6 评论 -
UNET家族网络之unet++(来自Kaggle比赛,亲测还行)
报!!! unet++ 重装上阵,复现Kaggle比赛,里面有参赛者自己的一些策略,值得学习喔二分类喔!链接:https://www.kaggle.com/meaninglesslives/nested-unet-with-efficientnet-encoder应该要VPN才能打开下面从数据输入开始哈,上一篇虽然已经复现了GitHub的unet++,但是我觉得还不够,再来一个感觉效果更好...原创 2020-01-17 13:21:49 · 4232 阅读 · 11 评论 -
UNET家族网络之Unet++(附带了Nestnet、uent、PSPnet等)
最近复现了一下unet++,发现这个项目里包含了很多网络,推荐给大家一下,GitHub链接:https://github.com/MrGiovanni/UNetPlusPlus/tree/master/segmentation_models另外还有一个链接:https://github.com/ShawnBIT/UNet-family里面包含了很多unet家族的网络,可以多了解一下。这个un...原创 2020-01-16 15:32:30 · 6989 阅读 · 31 评论 -
深度学习数值分析即回归分析
我有类似于以下格式的csv数据,我想根据前两列特征预测得到第三列的数值代码如下:#coding=utf-8fromkerasimportmodelsfromkerasimportlayersfromsklearnimportpreprocessingfromsklearn.model_selectionimportKFoldfromker...原创 2020-01-09 12:34:20 · 839 阅读 · 0 评论 -
语义分割数据扩充(图像和标签同步扩充)
发现一个python包Augmentor,专门用于数据扩充,链接:https://augmentor.readthedocs.io/en/master/userguide/install.html,就是开发手册,里面包含了安装,包内函数的介绍、扩展性等,这个模块主要包括了:随机旋转、随机裁剪、镜像、随机变形、随机亮度、随机颜色、随机对比度、随机擦除等等。应该能够满足要求了,不满足还可以自己加函数用...原创 2019-12-31 15:33:03 · 3346 阅读 · 1 评论 -
Dropout与Batch Normalization在网络中的作用究竟是怎样的?(以Unet网络为参考)
看过相关论文的可能都注意到了,Dropout与Batch Normalization同时使用并不能达到1+1>=2的效果,反而会适得其反,下面我就用实践来看看究竟会怎样直接上图:以上结果都是在参数一样的情况下跑的左上:原始网络右上:单独添加了dropout的网络左下:单独添加了BN的网络 右下:添加了BN+dropout的网路(BN在前,dropout在后...原创 2019-12-22 00:10:32 · 1943 阅读 · 0 评论