https://blog.csdn.net/u010425776/article/details/50830193
-
/**
-
* 计算斐波纳切数列的第n个值
-
* @author chibozhou
-
*
-
*/
-
public class Fibonacci {
-
/**
-
* 分析:斐波纳切数列的第n个数的值是其前两个数之和,
-
* 因此要计算第n个数就需要计算其前两个数,
-
* 以此类推,直到计算出第0个数为止,
-
* 因此可以使用递归。
-
*/
-
-
/**
-
* 采用递归的方法
-
*/
-
public static int fibonacci(int n){
-
//健壮性判断
-
if(n< 0){
-
System.out.println( "n不能小于0!");
-
return 0;
-
}
-
-
//n==0
-
else if(n== 0)
-
return 0;
-
-
//n==1
-
else if(n== 1)
-
return 1;
-
-
//n>1
-
else
-
return fibonacci(n- 1) + fibonacci(n- 2);
-
-
}
-
-
-
-
/**
-
* 上述递归的代码虽然简单,但所需的内存空间很大,
-
* 而且在递归的过程中,有很多计算是重复的,比如:
-
* fibonacci(6)=fibonacci(5)+fibonacci(4)
-
* fibonacci(5)=fibonacci(4)+fibonacci(3)
-
* fibonacci(4)=fibonacci(3)+fibonacci(2)
-
* 由此可见:fibonacci(4)、fibonacci(3)均被重复计算,
-
* 因此递归的方法在时间和空间上的开销都很大!
-
* 是否有比递归更好的办法来实现斐波纳切?
-
*/
-
-
-
-
/**
-
* 递归之所以开销巨大,是因为它是一个自顶向下的计算过程,
-
* 要计算fibonacci(n),就需要先计算fibonacci(n-1)和fibonacci(n-2),
-
* 而在fibonacci(0)被计算出之前,之前所有的函数都处于在内存中等待的状态,都占用着内存空间;
-
* 因此,如果我们采用自底向上的方式,每完成一个fibonacci函数,就记录下该值,并释放其内存空间,
-
* 就能节约内存空间。
-
* 此外,由于fibonacci(n)是由前两个数相加得到的,
-
* 因此只要将每次计算结果和前一个数记录下来,就能计算出之后值,从而避免了重复计算。
-
* @param n 斐波纳切数列长度
-
* @return 第n个元素值
-
*/
-
public static int fibonacci_recursion(int n){
-
//健壮性判断
-
if(n< 0){
-
System.out.println( "n不能小于0");
-
return 0;
-
}
-
-
if(n== 0 || n== 1)
-
return n;
-
-
//a1用于存储fibonacci(n-2),a2用于存储fibonacci(n-1),a3用于存储fibonacci(n)
-
int a1= 0,a2= 1,a3= 1;
-
for( int i= 0;i<n- 1;i++){
-
a3 = a1+a2;
-
a1 = a2;
-
a2 = a3;
-
}
-
-
return a3;
-
}
-
-
-
}
-
-
/**
-
* 计算斐波纳切数列的第n个值
-
* @author chibozhou
-
*
-
*/
-
public class Fibonacci {
-
/**
-
* 分析:斐波纳切数列的第n个数的值是其前两个数之和,
-
* 因此要计算第n个数就需要计算其前两个数,
-
* 以此类推,直到计算出第0个数为止,
-
* 因此可以使用递归。
-
*/
-
-
/**
-
* 采用递归的方法
-
*/
-
public static int fibonacci(int n){
-
//健壮性判断
-
if(n< 0){
-
System.out.println( "n不能小于0!");
-
return 0;
-
}
-
-
//n==0
-
else if(n== 0)
-
return 0;
-
-
//n==1
-
else if(n== 1)
-
return 1;
-
-
//n>1
-
else
-
return fibonacci(n- 1) + fibonacci(n- 2);
-
-
}
-
-
-
-
/**
-
* 上述递归的代码虽然简单,但所需的内存空间很大,
-
* 而且在递归的过程中,有很多计算是重复的,比如:
-
* fibonacci(6)=fibonacci(5)+fibonacci(4)
-
* fibonacci(5)=fibonacci(4)+fibonacci(3)
-
* fibonacci(4)=fibonacci(3)+fibonacci(2)
-
* 由此可见:fibonacci(4)、fibonacci(3)均被重复计算,
-
* 因此递归的方法在时间和空间上的开销都很大!
-
* 是否有比递归更好的办法来实现斐波纳切?
-
*/
-
-
-
-
/**
-
* 递归之所以开销巨大,是因为它是一个自顶向下的计算过程,
-
* 要计算fibonacci(n),就需要先计算fibonacci(n-1)和fibonacci(n-2),
-
* 而在fibonacci(0)被计算出之前,之前所有的函数都处于在内存中等待的状态,都占用着内存空间;
-
* 因此,如果我们采用自底向上的方式,每完成一个fibonacci函数,就记录下该值,并释放其内存空间,
-
* 就能节约内存空间。
-
* 此外,由于fibonacci(n)是由前两个数相加得到的,
-
* 因此只要将每次计算结果和前一个数记录下来,就能计算出之后值,从而避免了重复计算。
-
* @param n 斐波纳切数列长度
-
* @return 第n个元素值
-
*/
-
public static int fibonacci_recursion(int n){
-
//健壮性判断
-
if(n< 0){
-
System.out.println( "n不能小于0");
-
return 0;
-
}
-
-
if(n== 0 || n== 1)
-
return n;
-
-
//a1用于存储fibonacci(n-2),a2用于存储fibonacci(n-1),a3用于存储fibonacci(n)
-
int a1= 0,a2= 1,a3= 1;
-
for( int i= 0;i<n- 1;i++){
-
a3 = a1+a2;
-
a1 = a2;
-
a2 = a3;
-
}
-
-
return a3;
-
}
-
-
-
}
-