机器学习算法(12)之集成学习之模型融合

本文介绍了集成学习的基本思想和重要性,包括集成学习的两种主要类型——同质和异质个体学习器。重点讨论了三种常用的集成方法:bagging、boosting和stacking,以及它们在处理分类和回归问题时的结合策略,如平均法和投票法。文章还探讨了stacking作为更高级的结合策略,通过次级学习器进一步提升预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:集成学习(Ensemble Learning),广泛用于分类和回归任务。它最初的思想很简单:使用一些(不同的)方法改变原始训练样本的分布,从而构建多个不同的分类器,并将这些分类器线性组合得到一个更强大的分类器,来做最后的决策。也就是常说的“三个臭皮匠顶个诸葛亮”的想法。

        集成学习的理论基础来自于Kearns和Valiant提出的基于PAC(probably approximately correct)的可学习性理论 ,PAC 定义了学习算法的强弱:

  1. 弱学习算法:识别错误率小于1/2(即准确率仅比随机猜测略高的算法) 
  2. 强学习算法:识别准确率很高并能在多项式时间内完成的算法

根据这两个概念,后来产生了一个重要的结论: 

       强可学习与弱可学习是等价的,即:一个概念是强可学习的充要条件是这个概念是弱可学习的

据此,为了得到一个优秀的强学习模型,我们可以将多个简单的弱学习模型“

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

且行且安~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值