堆排序

1. 简介

  堆排序是建立在堆这种数据结构基础上的选择排序,是原址排序,时间复杂度O(nlogn),堆排序并不是一种稳定的排序方式。堆排序中通常使用的堆为最大堆。
  

2. 堆的定义

  堆是一种数据结构,是一颗特殊的完全二叉树,通常分为最大堆和最小堆。最大堆的定义为根结点最大,且根结点左右子树都是最大堆;同样,最小堆的定义为根结点最小,且根结点左右子树均为最小堆。
  最大堆满足其每一个父结点均大于其左右子结点,最小堆则满足其每一个父结点均小于其左右子结点。

3. 堆排序

3.1 堆的存放

  在堆排序中,堆所表示的二叉树并不需要使用指针的方式在计算机中存放,只需要使用数组即可,将树的结点,从上至下,从左至右一个个放到数组中去。
  因此,如果数组的起始索引为0,对于一个结点i来说,它的父结点索引为[(i-1)/2],它的左子结点索引为2i+1,右子结点索引为2i+2。最后一个非叶子节点就是最后一个结点的父亲,如果数组长度为n,那么其索引为[(n-2)/2]。

3.2 堆排序主要步骤

  1. 将无序序列构建成最大堆
  2. 将数组分成两个区域,有序区和无序区,初始时创建一个整数i为数组的长度,用来划分有序区和无序区,有序区初始为空。
  3. 将堆顶元素和最后一个无序区的元素交换,然后i-1。
  4. 调整使得所有无序区的元素重新为最大堆。
  5. 重复3,4步,直到 i = 0

3.3 堆的调整

  假设有某棵完全二叉树,其左右子树均为最大堆,如何调整使得该二叉树成为最大堆呢?如果根结点大于左右子结点,那么已经是最大堆了,无需调整。否则,交换根结点和左右子结点中较大的那个。假设交换的是左结点,那么目前这棵完全二叉树右子树仍然是一个最大堆,左子树则不一定,但是左子树的左右子树还是最大堆,因此不断递归下去调整即可。
  因此,交换最后一个元素和堆顶元素后的调整步骤,就和上面所说的一致。而将无序序列构建成最大堆,同样也可以运用这一点。从最后一个非叶子结点到第一个非叶子结点(根结点),对这些结点作为根结点的子树,按顺序调用一次上述描述的调整即可(每次调用时,该子树的左右子树必定是最大堆)。

4. 算法实现

#include <iostream>
using namespace std;

//左右子树都是最大堆,从上至下调整使得最大堆, root是要调整的树的根节点,length是无序区的长度
template<typename T>
void adjust(T *array,int root,int length) {
    if(length == 0)
        return;
    int left_child = 2*root+1;
    int right_child = 2*root+2;
    int left_adjust = 1,right_adjust = 1;
    if(left_child >= length || !(array[root] < array[left_child]))
        left_adjust = 0;
    if(right_child >= length || !(array[root] < array[right_child]))
        right_adjust = 0;
    if(left_adjust+right_adjust == 0)
        return;
    else if(left_adjust*right_adjust == 1) {
        if(array[left_child] >= array[right_child])
            right_adjust = 0;
        else
            left_adjust = 0;
    }
    if(left_adjust) {
        swap(array[left_child],array[root]);
        adjust(array,left_child,length);
    } else {
        swap(array[right_child],array[root]);
        adjust(array,right_child,length);
    }
}

//heapsort主递归,每一次将无序区最后一个元素与堆顶元素交换
//将堆顶元素加入有序区,因此有序区加1,无序区减1,无序区只剩一个元素的时候递归终止
template<typename T>
void heapSortMain(T *array,int length) {
    if(length <= 1)
        return;
    swap(array[0],array[length-1]);
    adjust(array,0,length-1);
    heapSortMain(array,length-1);
}

//入口函数,array是待排序的数组,length是其长度
template<typename T>
void heapSort(T *array,int length) {
    if(array == NULL || length <= 1)
        return;
    for(int i = (length-2)/2;i >= 0;i--)
        adjust(array,i,length);
    heapSortMain(array,length);
}

int main() {
    int a[10] = {7,6,3,4,5,8};
    heapSort(a,10);
    for(int i = 0;i < 10;i++)
        cout << a[i] << " ";
    cout << endl;
}

5.堆排序性质

  1. 时间复杂度O(nlogn)
       每次调整,是沿着树的某一分支一直往下的,按最坏的情况计算,是O(logn)的复杂度。 初始化需要⌊(n-1)/2⌋次调整,后面则需要n-1次调整,每次调整即有一个输出,因此最坏情况下是O(nlogn)的复杂度。另外,建堆的均摊时间复杂度是O(n)而不是O(nlogn),分析比较复杂,这里不展开。
  2. 空间复杂度O(1)
       空间复杂度可以明显地从算法中看出,不管待排序列多大,只需要常数个额外的空间即可,因此是原地排序。
  3. 不稳定排序
      堆排序显然不是稳定排序,这点举个反例即可简单认证。假设某个初始序列就是最大堆了,对于[3,2,1,2],第一层子节点的2反而会先与堆顶交换,从而排到后面去。

6.视觉效果

  下图清楚地展示了初始最大堆,堆顶和无序区最后一个元素交换后调整,不断循环直至有序的过程。
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值