机器学习-5-如何进行交叉验证

交叉验证是一种评估模型稳定性和泛化能力的方法,尤其适用于中小型数据集。它通过将数据集多次划分训练集和测试集,减少过拟合风险。本文介绍了7种交叉验证技术,包括训练-测试分离、k折、分层k折、留一、留p、蒙特卡洛和时间序列交叉验证,并以医疗数据分析为例,展示了在决策树和随机森林模型中应用交叉验证的效果。
摘要由CSDN通过智能技术生成

参考一文带您了解交叉验证(Cross-Validation):数据科学家必须掌握的7种交叉验证技术
参考如何在机器学习中使用交叉验证(实例)

1 交叉验证

1.1 交叉验证的本质

针对中小型数据集常用的一种用于观察模型稳定性的方法——交叉验证。

交叉验证是用来观察模型的稳定性的一种方法,我们将数据划分为n份,依次使用其中一份作为测试集,其他n-1份作为训练集,多次计算模型的精确性来评估模型的平均准确程度。训练集和测试集的划分会干扰模型的结果,因此用交叉验证n次的结果求出的平均值,是对模型效果的一个更好的度量。
在这里插入图片描述
本质:将数据集进行多次划分,一部分做为训练集来训练模型,另一部分做为测试集,以此多次计算ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮冰燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值