一种语义网新框架RDFX,为WEB3.0赋能
概述
本文档描述了一种新的应用于语义网的资源描述框架( Resource Description Framework Xenogenetics)以下简称RDFX,旨在提供一种不同的互联网服务之间信息材料的传递和处理。它涉及将信息从一个应用传递到另一个应用处理或融合的过程。这个标准可以应用于互联网不同产品之间的信息共建共享、交互合作、人工智能等场景,同时RDFX是一种图数据库结构。
原理
RDFX底层实际上是一种增加了网络定位信息的图数据库结构,通过图数据库中的节点之间的关系来进行推理描述,但与当下流行的图数据库引擎neo4j不同的是,RDFX的所有节点处在同一个维度,没有强制区分类型比如 类和属性的概念,因为在现实生活中描述一个事物,属性也可能是一个类,无限细分下去,类会越来越少,直至大统一,这也是物理学上的追求,所以强制区分类型是对无限可能的一种限制,但是我们在表述时仍然可以说谁是谁的属性。我们区别图数据库除了统一网络定位赋予的互联网能力外,我们还增加了执行能力(action),就是说某个应用不仅可以查询数据还可以针对数据提供一系列服务,比如增删改查-持久化能力,分析计算能力。下面本方案将从数据结构和示例展开讲解。
字段内容如下:
字段名称 | 解释 |
uri | 统一资源定位 |
ontology | 本体 |
relation | 关系 |
data | 实际内容 |
action | 处理器 |
JSON结构示例:
本体描述及关系描述:
{
"uri": "https://www.baidu.com/description/001",
"ontology": "description",
"data": "people",
"action": "",
"relation": [
{
"uri": "https://www.baidu.com/description/001",
"ontology": "description",
"data": "grandpa",
"action": "",
"relation": {
"uri": "https://www.baidu.com/description/002",
"ontology": "description",
"data": "people",
"action": ""
}
]
}
}
实体数据:
{
"uri": "https://www.baidu.com/human/001",
"ontology": "people",
"data": "小明",
"action": "",
"relation": {
"uri": "https://www.baidu.com/grandpa/001",
"ontology": "grandpa",
"data": " ",
"action": "",
"relation": {
"uri": "https://www.baidu.com/human/002",
"ontology": "people",
"data": "老明",
"action": ""
}
}
}
小明的爷爷是老明
people(小明)->grandpa(小明的grandpa)->people(老明)
场景示例
"道生一,一生二,二生三,三生万物……"这可能不是玄学,是经验。我们在归纳分析一件事物时,总能归纳出越来越基本的模型,使用基本模型构建系统是“合乎道”的行为。由于“合乎道、得道多助”种种的好处是经验之谈,展开细述非常占用篇幅,在此不做赘述,以下描述了当下几个热门的应用场景。
人工智能场景
gpt语言处理模型 Transformer架构,面对海量的数据是根据位置编码(positional)计算不同单词的位置关系,此种能力本质上处理还是关系。如果这些数据使用RDFX模型,不同数据的关系就会是显而易见的,不局限于(词)这种数据,我认为这是减少了“整理仓库的过程”,符合人类减少成本支出的经验,人工智能可以把更多精力更高层次的事情上面,需要注意的是:以上不是说transformer计算关系这项工作是多于的,是在表达,如果底层数据结构是RDFX,人工智能可以少用更少的数据来达到某个“智能等级”。
WEB应用
图数据结构更符合人的经验,数据库的主要特点和优势包括:
灵活性和表达能力:图数据库能够灵活地表示和处理复杂的关系和连接。它们适用于许多实际场景,如社交网络分析、推荐系统、知识图谱、网络拓扑分析等。
高性能图查询:图数据库采用了专门的数据结构和查询算法来加速图查询操作,如遍历、连接和图形分析。这使得它们能够高效地执行复杂的图查询,提供快速的响应时间。在某些需要高反应效率的场景,RDFX可以建立针对每一个关系建立索引构成全息索引,可以毫秒级的匹配数据库中包含任何关系的数据。
关系推理和图分析:图数据库支持图分析算法和关系推理,可以用于发现隐藏的模式、预测和推断关系,进行图形挖掘和深入的数据分析。
可扩展性和弹性:图数据库通常具有可扩展性和高可用性的特点,可以处理大规模图数据,并支持水平扩展和集群部署。
存储和更新效率:相较于关系型数据库和文档数据库,图数据库在处理包含大量关系和连接的数据时,通常能够提供更高效的存储和更新性能。
总的来说,图数据库提供了一个强大的工具和平台,用于处理和利用图结构数据。它们在许多领域中具有广泛的应用,能够帮助用户发现模式、解决复杂问题,并从庞大的关系网络中提取有价值的信息。
WEB 3.0
目前大家对web3.0的认值停留在构建“Web3.0将建立可信的SNS(社会网络服务系统)”,我认为web3.0不仅仅是构建 "可信",而是构建 “可信”+“智能”+“共享”,并且区块链的加密算法安全性存在争议,一旦被破解对整个生态网络是毁灭性的打击,所以互联网的可信要链接现实生活中的信用体系,才能形成被广泛认可的可信,这也是BBI标准(《基于区块链技术的WEB应用交互标准(Blockchain-based interaction)》)中“留档和打印的数据标准”解决的问题,关于如何WEB 3.0的架构方案是一个大课题,后续会提供一种以RDFX+BBS为框架的web3.0架构方案,届时为大家展开细述。