氢气分子的解离能,也就是结合能,根据资料中给出的是约4.48eV。(G. Kresse & J. Hafner, Surface Sci. 459 (2000) 287)
为此,首先要计算一个氢气分子的孤立能量,再减去两个孤立氢原子能量,将得到氢气分子的结合能。
先计算单个原子能量,选取PAW_PBE文件夹下的H下面的POTCAR
用到的其他输入文件如下:
INCAR:
SYSTEM = H atom in a box
ISMEAR = 0 ! Gaussian smearing
SIGMA = 0.01
ENCUT = 350.0
KPOINTS:
Automatic mesh
0
Monkhorst Pack
1 1 1
0. 0. 0.
POSCAR:
H atom in a box
1.0 ! universal scaling parameters
7.0 0.0 0.0 ! lattice vector a(1)
0.0 8.0 0.0 ! lattice vector a(2)
0.0 0.0 9.0 ! lattice vector a(3)
1 ! number of atoms
cart ! positions in cartesian coordinates
0 0 0
用上述文件计算得到
T
O
T
E
N
(
H
)
=
+
0.000854
e
V
(
H
a
t
o
m
)
TOTEN(H) = +0.000854eV (H atom)
TOTEN(H)=+0.000854eV(Hatom),用
P
A
W
−
G
G
A
PAW-GGA
PAW−GGA得到类似结果。
然后计算氢分子能量,用类似的输入文件:
INCAR:
SYSTEM = H2 dimer in a box
ISMEAR = 0 ! Gaussian smearing
NSW = 5 ! 5 ionic steps
IBRION = 2 ! use the conjugate gradient algorithm
ENCUT = 350.0
POTIM = 0.1
KPOINTS:
Automatic mesh
0
Monkhorst Pack
1 1 1
0. 0. 0.
POSCAR:
H2 molecule in a box
1.0 ! universal scaling parameters
8.0 0.0 0.0 ! lattice vector a(1)
0.0 8.0 0.0 ! lattice vector a(2)
0.0 0.0 8.0 ! lattice vector a(3)
2 ! number of atoms
cart ! positions in cartesian coordinates
0 0 0 ! first atom
0 0 0.5 ! second atom
根据定义, E = − ( T O T E N ( H 2 ) − 2 × T O T E N ( H ) ) = 6.68 e V E=-(TOTEN(H_2)-2\times TOTEN(H)) = 6.68eV E=−(TOTEN(H2)−2×TOTEN(H))=6.68eV,键长 $= 0.75102 \AA $。比文献中的结合能大了不少。 出现上述结果的原因是在计算单个H原子能量的时候没有指定基态为spin polarized state。为了得到正确的解离能,计算单个H原子能量的时候需要指定ISPIN=2。加上以上的tag后,TOTEN(H atom [spin-polarized])=-1.10351 eV,用公式重新计算解离能:
E − b i n d i n g = − ( T O T E N ( H 2 ) − 2 × T O T E N ( H [ s p i n − p o l a r i z e d ] ) ) = 4.48 e V E-binding=-(TOTEN(H_2)-2 \times TOTEN(H [spin-polarized ])) = 4.48eV E−binding=−(TOTEN(H2)−2×TOTEN(H[spin−polarized]))=4.48eV
和文献吻合。另外,文献*[G.Kresse, PRB 62, 8295 (2000)]*中详细讨论了氢分子的解离能的计算方法和结果。