Factorization Machines with libFM
摘要FM是一种通用的方法,它能通过特征工程的方式模仿大部分分解模型。这样的话,FM就能在预测大型领域的两个实体变量之间的交互时结合特征工程的一般性和分解模型的优越性。LIBFM是FM的软件实现,实现了随机梯度下降(SGD),交替最小二乘(ALS)和使用MCMC进行贝叶斯推断的方法(MCMC)。本文从建模和学习两个角度总结了FM最近的研究进展,对ALS和MCMC算法进行了拓展;并对LIBFM工具进行了
翻译
2016-10-08 21:12:08 ·
2485 阅读 ·
0 评论