bzoj 1815: [Shoi2006]color 有色图

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1815
思路:这道题用来polya计数的入门。。。让我稍微理解了一下polya定理
这题的思路还是非常好的,首先我们考虑同构计数,我们是无法直接套用polya计数的,因为这个题有一个很蛋疼的地方就是点的置换造成边的置换,那么我们只能套用burnside,注意到这里一共有 n! 个置换,总的置换集相当于全排列,那么这样不动点等价于:若 c(u,v)=k[c] ,那么 c(f(u),f(v))=k[f] .
根据这个性质,我们可以开始着手问题了,在xiaoyimi大爷的提示下,我们发现一个很经典的数量级,注意到很多解的形式是相同的,我们按循环节大小排序,那么这个合法解的数量级是很小的,在 n=53 的时候不过 3105 n=60 的时候才 106 左右,我认为这是不好注意到的一点性质。
那么我们有一种方法,我们找出每种有序的置换,然后暴力 O(n2) 计算其贡献,但这样做是会 T 掉的。
那么我们注意到对于两个不同的循环节(设大小分别是n m ),我们按置换分别进行0 n/m1 的编号,那么满足 c(x,y)=c((x+k) mod n,(y+k) mod m ,我们考虑对于 (a,b) 那些边 (a,b1) 和它相同呢?这个问题有解当且仅当 gcd(n,m)|(bb1) ,而且每个点都是等价的,那么也就是说总的不同的颜色数是 gcd(n,m) ,然而有一个trcik,你可以不分析出这条性质,用暴力 O(n4) 预处理来做不会超时。
另外对于同一循环节内的边,什么时候会相同呢?按照刚才的思路分析会发现实际上这样相同的边是对称的,这样来看不同的颜色数是 n2 ,但这一步也是可以暴力 O(n3) 计算的。
然后我们的目标变为求两两gcd,在本题中因为并不是每次循环节个数都达到 n ,所以可以直接预处理gcd后暴力,然而这样最坏复杂度是O(n2)
这玩意当然是可以优化成 O(nlogn) 的了,我们用 ϕ 函数加速计算,利用这个性质:

d|nϕ(d)=n
,再加上调和级数的复杂度分析,就做到更快了,但因为 n <script type="math/tex" id="MathJax-Element-27">n</script>较小这样做并没有暴力跑的快。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<string>
#define N 55
#define int long long
using namespace std;
int prime[N],phi[N],mo,n,m,cnt,ans,da[65],a[65],b[65][65],c[1775],fac[1775],inv[1775],num[N],haha,kkk[N],poq[N][N];
bool vis[1775],not_prime[N];
void Sieve(){
    memset(not_prime,0,sizeof(not_prime));
    cnt = 0;
    phi[1]=1;
    for (int i = 2;i < N - 1; ++i){
        if (!not_prime[i]) prime[++cnt] = i,phi[i] = i - 1;
        for (int j = 1;j <= cnt; ++j)
          if (prime[j] * i >= N - 1) break;
          else {
            not_prime[prime[j] * i] = 1;
            if (i % prime[j]) phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            else{
             phi[i * prime[j]] = phi[i] * prime[j];
               break; }
          } 
    }
    int x = 0,y = 0;
    memset(kkk,0,sizeof(kkk));
    for (int s = 1;s < N - 1; ++s){
        memset(poq,0,sizeof(poq));
        x = 0; y = 0;
        for (int i = 0;i < s; ++i)
          for (int j = i + 1;j < s; ++j)
            if (!poq[i][j]) {
               ++x;
               int aa,bb;
               for (aa = i,bb = j;!poq[aa][bb];aa = (aa + 1) % s,bb = (bb + 1) % s) poq[aa][bb] = poq[bb][aa] = x;
               if (poq[aa][bb] == x) ++y;
            }
        kkk[s] = y;
    }
    //for (int i = 1;i <= 5; ++i) cout<<kkk[i]<<" ";
}

int qr(int x,int y)
{
    int t=1;
    for (;y;y>>=1,x=x*x%mo)
        if (y&1) t=t*x%mo;
    return t;
}
void dfs(int sum,int last)
{
    if (sum==n)
    {
        int t=0,fi=1,last=1,sum=fac[n];
        for (int len,i=1;i<=da[0];i++)
        {
            fi=last;
            sum=sum*inv[da[i]]%mo*fac[da[i]-1]%mo;
            for (int j=1;j<=da[i];++j)
                a[last]=last+1,
                ++last;
            --last;
            a[last]=fi;
            ++last;
        }
        for (int len,i=1;i<=da[0];i=len+1)
        {
            len=i;
            while (len<da[0]&&da[len]==da[len+1]) ++len;
            sum=sum*inv[len-i+1]%mo;
        }
        /*for (int i=1;i<=n;++i)
            for (int j=i+1;j<=n;++j)
                c[b[i][j]]=b[a[i]][a[j]]; */
        /*for (int i=1;i<=cnt;++i) vis[i]=0;*/
        int fpp = 0;
        for (int k = 1;k < N - 1; ++k)
          { int fp = 0;
          for (int j = k;j < N - 1;j += k) fp += num[j];
          fpp += ((phi[k] * fp * fp));
          //printf("%d %d\n",fp,fpp);
          }
        fpp = (fpp - n) / 2 + haha;

        /*for (int i=1;i<=cnt;++i)
        if (!vis[i])
        {
            ++t;
            for (int j=i;!vis[j];j=c[j])
                vis[j]=1;
        }
        printf("%d:",t);
        for (int i=1;i<=da[0];++i) printf("%d ",da[i]);
        puts("");*/
        (ans+=sum*qr(m,fpp)%mo)%=mo;
        return;
    }
    for (int i=last;sum+i<=n;++i)
        num[i]++,
        haha += kkk[i],
        da[++da[0]] = i,
        dfs(sum+i,i),
        --num[i],
        --da[0],
        haha -= kkk[i];
}
main()
{
    Sieve();
    haha = 0;
    memset(num,0,sizeof(num));
    scanf("%d%d%d",&n,&m,&mo);
//  freopen("std.txt","w",stdout); 
    fac[0]=1;
    for (int i=1;i<=1770;++i) fac[i]=fac[i-1]*i%mo;
    inv[1]=1;
    for (int i=2;i<=1770;++i) inv[i]=(mo-mo/i)*inv[mo%i]%mo;
    for (int i=2;i<=1770;++i) inv[i]=inv[i]*inv[i-1]%mo;
        for (int i=1;i<=n;++i)
            for (int j=i+1;j<=n;++j) b[i][j]=b[j][i]=++cnt;
    dfs(0,1);
//  sort(fp+1,fp+fp[0]+1);
    printf("%d\n",ans*inv[n]%mo);
//  for (int i=1;i<=fp[0];++i) printf("%d\n",fp[i]);
//  }
}

总结:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值